ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. 1998

M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.

The Sec1 family of proteins is thought to function in both non-neuronal and neuronal secretion, although the precise role of this protein family has not been defined. Here, we study the function of ROP, the Drosophila Sec1 homolog, in neurotransmitter release. Electrophysiological analyses of transgenic lines overexpressing ROP and syntaxin, a presynaptic membrane protein, indicate that ROP interacts with syntaxin in vivo. Characterization of four point mutations in ROP shows that they fall into two phenotypic classes. Two mutations cause a dramatic reduction in both evoked and spontaneous neurotransmitter release. In contrast, the other two mutations reveal an increase in evoked neurotransmission. Our data further show that neurotransmission is highly sensitive to the levels of ROP function. Studies on heterozygote animals indicate that half the amount of wild-type ROP results in a dramatic decrease in evoked and spontaneous exocytosis. Taken together, these results suggest that ROP interacts with syntaxin in vivo and is a rate-limiting regulator of exocytosis that performs both positive and inhibitory functions in neurotransmission.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050765 Qa-SNARE Proteins A subfamily of Q-SNARE PROTEINS which occupy the same position as syntaxin 1A in the SNARE complex and which also are most similar to syntaxin 1A in their AMINO ACID SEQUENCE. This subfamily is also known as the syntaxins, although a few so called syntaxins are Qc-SNARES. Qa-SNAREs,Syntaxin,Syntaxin 10,Syntaxin 10 Protein,Syntaxin 11,Syntaxin 11 Protein,Syntaxin 13,Syntaxin 13 Protein,Syntaxin 17,Syntaxin 17 Protein,Syntaxin 18,Syntaxin 18 Protein,Syntaxin 1A Homologs,Syntaxin 3,Syntaxin 3 Protein,Syntaxin 3A,Syntaxin 3A Protein,Syntaxin 3B,Syntaxin 3B Protein,Syntaxin 3C,Syntaxin 3C Protein,Syntaxin 3D,Syntaxin 3D Protein,Syntaxin 4,Syntaxin 4 Protein,Syntaxin 5,Syntaxin 5 Protein,Syntaxin 6,Syntaxin 6 Protein,Syntaxin 7,Syntaxin 7 Protein,Syntaxin 8,Syntaxin 8 Protein,Syntaxin Protein,Syntaxin Proteins,Syntaxins,Protein, Syntaxin,Protein, Syntaxin 11,Proteins, Syntaxin,Qa SNARE Proteins,Qa SNAREs
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
April 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
February 2001, European journal of cell biology,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
April 2020, eLife,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
January 2016, Journal of cell science,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
July 1999, Neuron,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
September 2018, Journal of neurogenetics,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
November 2005, The Journal of biological chemistry,
M N Wu, and J T Littleton, and M A Bhat, and A Prokop, and H J Bellen
December 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!