Physical characterization and ATPase activity of 14S dynein fractions from Tetrahymena thermophila. 1997

H A Tharia, and A J Rowe, and O Byron, and C Wells
Department of Biochemistry, University of Leicester, UK.

Using anion-exchange fast protein liquid chromatography, 14S dynein was separated into four fractions (designated 1-4). These fractions were distinguished with respect to polypeptide composition, and at least four unique heavy chains were identified. Each fraction was shown to exhibit ATPase activity. Fraction 2 has a specific activity 2-3 times greater than that of fractions 1, 3, and 4; the fractions showed a consistent trend of decreasing activity in the order 2 > 3 > 1 > 4. In all cases, the specific ATPase activity was reduced by high ionic strength, in contrast to 22S dynein, which was previously shown to exhibit increased activity under identical conditions. Electron microscopy analysis revealed that the four fractions of 14S dynein were structurally distinct. Fraction 1 comprises two globular head domains interconnected via two stems; fraction 2 consists of at least two clearly different globular structures; fraction 3 is a single globular head; and fraction 4 comprises three globular head domains interconnected by three stems to a basal structure. Further structural characterization using hydrodynamic techniques enabled a determination of mass and sedimentation coefficient for each fraction. Fraction 1 had a mass of 654 kDa and a sedimentation coefficient of 20.1 S. Fraction 2 had a variable mass due to association (616-966 kDa), and a sedimentation coefficient of 16.6 S, whereas fractions 3 and 4 had variable sedimentation coefficients but were of mass 701 kDa and 527 kDa respectively. Where possible, hydrodynamic parameters were utilized, in conjunction with electron microscopy data, to construct low-resolution hydrodynamic bead models to represent the fractions. Optimal models, which were consistent with all the available data, were produced for fractions 1 and 4. Bead modelling was also carried out for 22S dynein, using previously published data, to validate the 14S dynein modelling.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016808 Tetrahymena thermophila A species of ciliate protozoa used in genetic and cytological research. Tetrahymena thermophilas,thermophilas, Tetrahymena
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

H A Tharia, and A J Rowe, and O Byron, and C Wells
June 1992, European journal of biochemistry,
H A Tharia, and A J Rowe, and O Byron, and C Wells
January 1988, The Journal of cell biology,
H A Tharia, and A J Rowe, and O Byron, and C Wells
January 1999, The Journal of eukaryotic microbiology,
H A Tharia, and A J Rowe, and O Byron, and C Wells
January 2000, Methods in cell biology,
H A Tharia, and A J Rowe, and O Byron, and C Wells
February 2007, Cell motility and the cytoskeleton,
H A Tharia, and A J Rowe, and O Byron, and C Wells
April 1994, FEBS letters,
H A Tharia, and A J Rowe, and O Byron, and C Wells
May 1973, Archives of biochemistry and biophysics,
H A Tharia, and A J Rowe, and O Byron, and C Wells
October 1977, Biochimica et biophysica acta,
H A Tharia, and A J Rowe, and O Byron, and C Wells
January 1999, The Journal of eukaryotic microbiology,
H A Tharia, and A J Rowe, and O Byron, and C Wells
April 2016, Cytoskeleton (Hoboken, N.J.),
Copied contents to your clipboard!