Mechanism of RGS4, a GTPase-activating protein for G protein alpha subunits. 1998

S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

GTP hydrolysis by guanine nucleotide-binding proteins, an essential step in many biological processes, is stimulated by GTPase-activating proteins (GAPs). The mechanisms whereby GAPs stimulate GTP hydrolysis are unknown. We have used mutational, biochemical, and structural data to investigate how RGS4, a GAP for heterotrimeric G protein alpha subunits, stimulates GTP hydrolysis. Many of the residues of RGS4 that interact with Gi alpha 1 are important for GAP activity. Furthermore, optimal GAP activity appears to require the additive effects of interactions along the RGS4-G alpha interface. GAP-defective RGS4 mutants invariably were defective in binding G alpha subunits in their transition state; furthermore, the apparent strengths of GAP and binding defects were correlated. Thus, none of these residues of RGS4, including asparagine 128, the only residue positioned at the active site of Gi alpha 1, is required exclusively for catalyzing GTP hydrolysis. These results and structural data (Tesmer, J. G. G., Berman, D. M., Gilman, A. G., and Sprang, S. R. (1997) Cell 89, 251-261) indicate that RGS4 stimulates GTP hydrolysis primarily by stabilizing the transition state conformation of the switch regions of the G protein, favoring the transition state of the reactants. Therefore, although monomeric and heterotrimeric G proteins are related, their GAPs have evolved distinct mechanisms of action.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
August 1996, Cell,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
September 1996, Nature,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
November 1996, The Journal of biological chemistry,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
February 1997, The Journal of biological chemistry,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
July 1997, Proceedings of the National Academy of Sciences of the United States of America,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
May 1999, The Journal of biological chemistry,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
July 1991, Proceedings of the National Academy of Sciences of the United States of America,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
September 2002, Molecular pharmacology,
S P Srinivasa, and N Watson, and M C Overton, and K J Blumer
January 1998, Cellular signalling,
Copied contents to your clipboard!