Spaceflight downregulates antioxidant defense systems in rat liver. 1998

J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
Department of Kinesiology, University of Wisconsin-Madison, USA.

Liver antioxidant enzyme activities, mRNA abundance, and glutathione (GSH) status were investigated in male Sprague-Dawley rats placed in an enclosure module aboard Space Shuttle STS-63 for 8 d (F, n = 6). F animals were compared to rats housed in an enclosure module on the ground (G, n = 9), which simulated the vibration and temperature conditions associated with launch and flight, and rats kept under conventional ground vivarium conditions in individual cages (V, n = 6). Spaceflight significantly decreased catalase, GSH reductase, and GSH sulfur-transferase activities in the liver (p < .05). Neither enzyme activity nor enzyme protein content of Cu-Zn and Mn superoxide dismutase (SOD) was affected by flight. The relative abundance of mRNA for Cu-Zn SOD and catalase was significantly decreased comparing F with G rats (p < .05). Spaceflight resulted in a dramatic decrease of liver GSH, glutathione disulfide, and total GSH contents (p < .01), which were accompanied by a lower gamma-glutamyl transpeptidase activity (p < .05). F rats showed a 47% (p < .05) increase in liver malondialdehyde concentration compared to G and V rats. Liver protein content was not affected by flight. These results indicate that spaceflight can downregulate antioxidant defense capacity and elicit an oxidative stress in the liver.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D005723 gamma-Glutamyltransferase An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid. GGTP,Glutamyl Transpeptidase,gammaglutamyltransferase,gamma-Glutamyl Transpeptidase,Transpeptidase, Glutamyl,Transpeptidase, gamma-Glutamyl,gamma Glutamyl Transpeptidase,gamma Glutamyltransferase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
November 1989, Hepatology (Baltimore, Md.),
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
November 1988, Carcinogenesis,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
September 1997, Journal of hepatology,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
December 1997, Indian journal of experimental biology,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
October 1997, Free radical research,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
January 2005, Indian journal of clinical biochemistry : IJCB,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
July 1999, Pharmacology & toxicology,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
January 1999, Indian journal of pediatrics,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
April 2021, Experimental and therapeutic medicine,
J Hollander, and M Gore, and R Fiebig, and R Mazzeo, and S Ohishi, and H Ohno, and L L Ji
May 2000, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!