Genetic toxicities of human teratogens. 1997

J B Bishop, and K L Witt, and R A Sloane
Laboratory of Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. bishop@niehs.nih.gov

Birth defects cause a myriad of societal problems and place tremendous anguish on the affected individual and his or her family. Current estimates categorize about 3% of all newborn infants as having some form of birth defect or congenital anomaly. As more precise means of detecting subtle anomalies become available this estimate, no doubt, will increase. Even though birth defects have been observed in newborns throughout history, our knowledge about the causes and mechanisms through which these defects are manifested is limited. For example, it has been estimated that around 20% of all birth defects are due to gene mutations, 5-10% to chromosomal abnormalities, and another 5-10% to exposure to a known teratogenic agent or maternal factor [D.A. Beckman, R.L. Brent, Mechanisms of teratogenesis. Ann. Rev. Pharmacol. Toxicol. 24 (1984) 483-500; K. Nelson, L.B. Holmes Malformations due to presumed spontaneous mutations in newborn infants, N. Engl. J. Med. 320 (1989) 19-23.]. Together, these percentages account for only 30-40%, leaving the etiology of more than half of all human birth defects unexplained. It has been speculated that environmental factors account for no more than one-tenth of all congenital anomalies [D.A. Beckman, R.L. Brent, Mechanisms of teratogenesis, Ann. Rev. Pharmacol. Toxicol. 24 (1984) 483-500]. Furthermore, since there is no evidence in humans that the exposure of an individual to any mutagen measurably increases the risk of congenital anomalies in his or her offspring' [J.F. Crow, C. Denniston, Mutation in human populations, Adv. Human Genet. 14 (1985) 59-121; J.M. Friedman, J.E. Polifka, Teratogenic Effects of Drugs: A Resource for Clinicians (TERIS). The John Hopkins University Press, Baltimore, 1994], the mutagenic activity of environmental agents and drugs as a factor in teratogenesis has been given very little attention. Epigenetic activity has also been given only limited consideration as a mechanism for teratogenesis. As new molecular methods are developed for assessing processes associated with teratogenesis, especially those with a genetic or an epigenetic basis, additional environmental factors may be identified. These are especially important because they are potentially preventable. This paper examines the relationships between chemicals identified as human teratogens (agents that cause birth defects) and their mutagenic activity as evaluated in one or more of the established short-term bioassays currently used to measure such damage. Those agents lacking mutagenic activity but with published evidence that they may otherwise alter the expressions or regulate interactions of the genetic material, i.e. exhibit epigenetic activity, have likewise been identified. The information used in making these comparisons comes from the published literature as well as from unpublished data of the U.S. National Toxicology Program (NTP).

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007239 Infections Invasion of the host organism by microorganisms or their toxins or by parasites that can cause pathological conditions or diseases. Infection,Infection and Infestation,Infections and Infestations,Infestation and Infection,Infestations and Infections
D008659 Metabolic Diseases Generic term for diseases caused by an abnormal metabolic process. It can be congenital due to inherited enzyme abnormality (METABOLISM, INBORN ERRORS) or acquired due to disease of an endocrine organ or failure of a metabolically important organ such as the liver. (Stedman, 26th ed) Thesaurismosis,Diseases, Metabolic,Disease, Metabolic,Metabolic Disease,Thesaurismoses
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011248 Pregnancy Complications Conditions or pathological processes associated with pregnancy. They can occur during or after pregnancy, and range from minor discomforts to serious diseases that require medical interventions. They include diseases in pregnant females, and pregnancies in females with diseases. Adverse Birth Outcomes,Complications, Pregnancy,Adverse Birth Outcome,Birth Outcome, Adverse,Complication, Pregnancy,Outcome, Adverse Birth,Pregnancy Complication
D011251 Pregnancy Complications, Infectious The co-occurrence of pregnancy and an INFECTION. The infection may precede or follow FERTILIZATION. Complications, Infectious Pregnancy,Infectious Pregnancy Complications,Maternal Sepsis,Pregnancy, Infectious Complications,Sepsis during Pregnancy,Sepsis in Pregnancy,Infectious Pregnancy Complication,Pregnancy Complication, Infectious,Sepsis in Pregnancies,Sepsis, Maternal
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004781 Environmental Exposure The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals. Exposure, Environmental,Environmental Exposures,Exposures, Environmental

Related Publications

J B Bishop, and K L Witt, and R A Sloane
January 2017, European journal of medical genetics,
J B Bishop, and K L Witt, and R A Sloane
January 2008, Advances in pediatrics,
J B Bishop, and K L Witt, and R A Sloane
January 2011, Birth defects research. Part A, Clinical and molecular teratology,
J B Bishop, and K L Witt, and R A Sloane
September 2012, Reproductive toxicology (Elmsford, N.Y.),
J B Bishop, and K L Witt, and R A Sloane
March 2008, Expert opinion on drug safety,
J B Bishop, and K L Witt, and R A Sloane
June 2015, Journal of pediatric genetics,
J B Bishop, and K L Witt, and R A Sloane
December 2002, Teratology,
J B Bishop, and K L Witt, and R A Sloane
April 1977, The Journal of pediatrics,
J B Bishop, and K L Witt, and R A Sloane
January 1976, Journal of clinical pathology. Supplement (Royal College of Pathologists),
J B Bishop, and K L Witt, and R A Sloane
March 1977, Journal of the National Cancer Institute,
Copied contents to your clipboard!