Activity-dependent changes in intracellular calcium in myenteric neurons. 1997

M Hanani, and N Lasser-Ross
Hebrew University-Hadassah Medical School, Jerusalem, Israel.

The spatial distribution and changes in intracellular calcium concentration ([Ca2+]i) in myenteric neurons were measured using fura 2 in the longitudinal muscle-myenteric plexus preparation from the guinea pig duodenum. These measurements were made simultaneously with intracellular voltage recordings. The generation of action potentials in the cell bodies of both S- and AH-type neurons increased [Ca2+]i in the processes and cell bodies. There was no measurable delay between the [Ca2+]i changes in the somata and the processes, indicating that these changes were caused by the spread of electrical signals and not by diffusion. The rate of Ca2+ removal was faster in the processes than in the somata, apparently due to the large surface-to-volume ratio in the former. In AH neurons, the [Ca2+]i transient was shorter than the duration of the after-spike hyperpolarization. It is concluded that the two main types of myenteric neurons possess voltage-gated Ca2+ channels in both somata and processes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

M Hanani, and N Lasser-Ross
March 1983, Brain research,
M Hanani, and N Lasser-Ross
June 2006, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
M Hanani, and N Lasser-Ross
April 1980, The Journal of general physiology,
M Hanani, and N Lasser-Ross
April 1993, Journal of neurophysiology,
M Hanani, and N Lasser-Ross
January 1989, Annual review of physiology,
Copied contents to your clipboard!