Superoxide release is involved in membrane potential changes in mouse peritoneal macrophages. 1998

I A Gamaley, and K M Kirpichnikova, and I V Klyubin
Institute of Cytology, Russian Academy of Sciences, St. Petersburg. igamaley@link.cytspb.rssi.ru

Participation of reactive oxygen species (ROS) in the changes in macrophage membrane potential resulted from effects of different agonists has been studied. Treatment of macrophages with chemotactic peptide fMLP or platelet-activating factor (PAF) caused a brief depolarization followed by a long-lasting hyperpolarization. Lipopolysaccharide and interferon-gamma only depolarized the plasma membrane. Chemiluminescence measurements indicated that only fMLP and PAF activated macrophages to release ROS. The hyperpolarization response of the cell was significantly decreased in the presence of superoxide dismutase (but not catalase). Moreover, the O2.- -generating system, xanthine plus xanthine oxidase, caused a marked hyperpolarization. In all the cases, the hyperpolarization induced by fMLP, PAF and O2.- -generating system was found to depend on the concentration of intracellular Ca2+ and extracellular K+. Furthermore, in the presence of quinidine, a blocker of Ca2+-dependent K+ conductance fMLP and PAF caused only prolonged depolarization while the effect of O2.- was reduced to a minimum. These data suggest that the macrophage hyperpolarization response to fMLP and PAF involves superoxide-mediated Ca2+-dependent alteration of the relative membrane permeability to K+.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D016897 Respiratory Burst A large increase in oxygen uptake by neutrophils and most types of tissue macrophages through activation of an NADPH-cytochrome b-dependent oxidase that reduces oxygen to a superoxide. Individuals with an inherited defect in which the oxidase that reduces oxygen to superoxide is decreased or absent (GRANULOMATOUS DISEASE, CHRONIC) often die as a result of recurrent bacterial infections. Oxidative Burst,Burst, Oxidative,Burst, Respiratory,Bursts, Oxidative,Bursts, Respiratory,Oxidative Bursts,Respiratory Bursts
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D017737 Macrophages, Peritoneal Mononuclear phagocytes derived from bone marrow precursors but resident in the peritoneum. Peritoneal Macrophages,Macrophage, Peritoneal,Peritoneal Macrophage
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

I A Gamaley, and K M Kirpichnikova, and I V Klyubin
November 1985, Journal of immunology (Baltimore, Md. : 1950),
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
May 1996, Indian journal of experimental biology,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
December 1996, Scandinavian journal of immunology,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
November 1984, The American review of respiratory disease,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
January 1983, Transactions of the Royal Society of Tropical Medicine and Hygiene,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
April 1992, Molecular biology of the cell,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
August 2018, Nitric oxide : biology and chemistry,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
November 1982, European journal of cell biology,
I A Gamaley, and K M Kirpichnikova, and I V Klyubin
July 1982, Nature,
Copied contents to your clipboard!