The effects of gliclazide and other sulfonylureas on low-density lipoprotein oxidation in vitro. 1997

R C O'Brien, and M Luo
Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.

Diabetes is associated with increased oxidant stress. This may contribute to the development of diabetic macrovascular complications through increased oxidation of low-density lipoprotein (LDL), which is thought to be a crucial step in the development of atherosclerosis. The sulfonylurea gliclazide has been shown to have free radical-scavenging activity in vitro, but its effects on LDL oxidation, and these effects of other sulfonylureas, are unknown. To investigate this we studied the effects of in vitro supplementation with gliclazide 1 mumol/L on copper-induced oxidation of LDL isolated from 20 control subjects and 22 type II diabetic patients. The effects of 1 mumol/L vitamin C, a known water-soluble antioxidant, were studied simultaneously. The resistance to oxidation, expressed as the lag time between the addition of copper and commencement of oxidation, was significantly increased by both gliclazide and vitamin C, and the effect was similar for LDL from diabetic and control subjects. The baseline oxidation lag time was 63.4 +/- 2.1 minutes, and increased to 108 +/- 4.4 minutes with gliclazide and 88.7 +/- 5.6 minutes with vitamin C (P = .0001, baseline v either treatment). The increase in lag time with gliclazide of 70% +/- 3% was greater than the 30% +/- 5% increase with vitamin C (P < .0005). In a separate experiment, LDL isolated from eight control and 10 diabetic subjects was supplemented with 1 mumol/L gliclazide, glibenclamide, glipizide, and tolbutamide. For each LDL sample, all drugs were studied simultaneously and the oxidation lag time was compared against that of untreated LDL. Gliclazide increased the lag time from 53.7 +/- 2.4 minutes to 108.4 +/- 4.5 minutes (P = .0001). None of the other sulfonylureas had any effect on lag time. These findings demonstrate that gliclazide is an effective inhibitor of in vitro LDL oxidation, and in this respect, it is more potent on a molar basis than vitamin C. This antioxidant property of gliclazide was not shared by the other sulfonylureas studied.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003324 Coronary Artery Disease Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause. Arteriosclerosis, Coronary,Atherosclerosis, Coronary,Coronary Arteriosclerosis,Coronary Atherosclerosis,Left Main Coronary Artery Disease,Left Main Coronary Disease,Left Main Disease,Arterioscleroses, Coronary,Artery Disease, Coronary,Artery Diseases, Coronary,Atheroscleroses, Coronary,Coronary Arterioscleroses,Coronary Artery Diseases,Coronary Atheroscleroses,Left Main Diseases
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D003925 Diabetic Angiopathies VASCULAR DISEASES that are associated with DIABETES MELLITUS. Diabetic Vascular Complications,Diabetic Vascular Diseases,Microangiopathy, Diabetic,Angiopathies, Diabetic,Angiopathy, Diabetic,Diabetic Angiopathy,Diabetic Microangiopathies,Diabetic Microangiopathy,Diabetic Vascular Complication,Diabetic Vascular Disease,Microangiopathies, Diabetic,Vascular Complication, Diabetic,Vascular Complications, Diabetic,Vascular Disease, Diabetic,Vascular Diseases, Diabetic
D005260 Female Females
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420

Related Publications

R C O'Brien, and M Luo
February 2000, Metabolism: clinical and experimental,
R C O'Brien, and M Luo
January 2000, Journal of atherosclerosis and thrombosis,
R C O'Brien, and M Luo
February 1995, British journal of clinical pharmacology,
R C O'Brien, and M Luo
April 1994, The International journal of biochemistry,
R C O'Brien, and M Luo
November 2006, Current atherosclerosis reports,
R C O'Brien, and M Luo
December 1991, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
R C O'Brien, and M Luo
August 2017, Bioscience, biotechnology, and biochemistry,
R C O'Brien, and M Luo
December 2001, Italian heart journal : official journal of the Italian Federation of Cardiology,
Copied contents to your clipboard!