| D008969 |
Molecular Sequence Data |
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. |
Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular |
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000595 |
Amino Acid Sequence |
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. |
Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D017386 |
Sequence Homology, Amino Acid |
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. |
Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein |
|
| D018528 |
ATP-Binding Cassette Transporters |
A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. |
ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette |
|
| D019143 |
Evolution, Molecular |
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. |
Molecular Evolution,Genetic Evolution,Evolution, Genetic |
|
| D027425 |
Multidrug Resistance-Associated Proteins |
A sequence-related subfamily of ATP-BINDING CASSETTE TRANSPORTERS that actively transport organic substrates. Although considered organic anion transporters, a subset of proteins in this family have also been shown to convey drug resistance to neutral organic drugs. Their cellular function may have clinical significance for CHEMOTHERAPY in that they transport a variety of ANTINEOPLASTIC AGENTS. Overexpression of proteins in this class by NEOPLASMS is considered a possible mechanism in the development of multidrug resistance (DRUG RESISTANCE, MULTIPLE). Although similar in function to P-GLYCOPROTEINS, the proteins in this class share little sequence homology to the ATP BINDING CASSETTE TRANSPORTER, SUBFAMILY B, MEMBER 1 family of proteins. |
Multidrug Resistance-Associated Protein,ATP-Binding Cassette, Sub-Family C Proteins,MOAT Protein,Multispecific Organic Anion Transport Proteins,Multispecific Organic Anion Transporter,ATP Binding Cassette, Sub Family C Proteins,Multidrug Resistance Associated Protein,Multidrug Resistance Associated Proteins,Resistance-Associated Protein, Multidrug |
|