Splicing features in maize streak virus virion- and complementary-sense gene expression. 1997

E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
Department of Virus Research, John Innes Centre, Norwich Research Park, Colney, UK.

The single-stranded DNA geminiviruses produce transcripts from both strands (virion- and complementary-sense) of a nuclear double-stranded DNA molecule. In maize streak virus (MSV)-infected maize plants, approximately 80% of the complementary-sense transcripts produce the C1 protein, whilst the remaining 20% are spliced to remove a 92 nt intron and produce a C1:C2 fusion protein (Rep). Disruption of the complementary-sense 3' splice site abolished virus replication. The majority of the virion-sense transcripts initiated one nucleotide upstream of the V1 (movement protein) gene and a minority a further 141 nucleotides upstream. A 76 nt intron, with features typical of plant introns, was identified within the V1 gene, upstream of the coat protein gene. Spliced and unspliced forms of each virion-sense transcript were produced, but they differed in splicing efficiency. Approximately 50% of the major transcript and less than 10% of the minor transcript were processed. Mutagenesis of the consensus 5' splice site in the V1 gene resulted in the use of alternative cryptic splice sites, confirming the importance of splicing for MSV infection. Spliced virion-sense transcripts were also identified in tissue infected with the closely-related Digitaria streak virus (DSV) but not with another subgroup I geminivirus, wheat dwarf virus. Collectively, the multiple transcript initiation sites and different splicing efficiencies suggest that splicing is an important feature in the regulation of both early and late gene expression in MSV and DSV.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
September 1989, The Journal of general virology,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
April 2017, Virus genes,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
February 1992, The Plant cell,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
April 1999, Nucleic acids research,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
December 1984, The EMBO journal,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
December 1990, Nucleic acids research,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
February 1999, The Journal of general virology,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
January 2014, PloS one,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
January 1999, Archives of virology,
E A Wright, and T Heckel, and J Groenendijk, and J W Davies, and M I Boulton
October 2012, Virology,
Copied contents to your clipboard!