N-alkylated derivatives of [D-Pro10]dynorphin A-(1-11) are high affinity partial agonists at the cloned rat kappa-opioid receptor. 1997

K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
College of Pharmacy, Oregon State University, Corvallis 97331, USA.

As part of an effort to develop peptides with selective kappa-opioid antagonist activity, a series of N-alkylated [D-Pro10]dynorphin A-(1-11) derivatives were made through solid-phase peptide synthesis: R-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-D-Pro-LysOH, where R = N-benzyl, N-cyclopropylmethyl, N,N-dicyclopropylmethyl, or N,N-diallyl. These derivatives and dynorphin A-(1-13)NH2 were evaluated for kappa-opioid receptor binding affinity and potency as inhibitors of adenylyl cyclase. Equilibrium competition binding experiments using [3H]diprenorphine (approximately 600 pM) were performed on membranes prepared from cultured Chinese hamster ovary (CHO) cells stably expressing the rat kappa-opioid receptor. Tissue prepared from this cell line was used to evaluate opioid peptide inhibition of forskolin-stimulated (50 microM) adenylyl cyclase activity. Displacement of [3H]diprenorphine specific binding by these peptides was observed with a rank order of affinity (Ki, nM) = [D-Pro10]dynorphin A-(1-11) (0.13) > dynorphin A-(1-13)NH2 (0.34) > N-cyclopropylmethyl- (1.4) > N,N-dicyclopropylmethyl- (12.6) approximately N-benzyl- (18.3) approximately N,N-diallyl-[D-Pro10]dynorphin A-(1-11) (26.0). A similar rank order was observed for potency of adenylyl cyclase inhibition (IC50, nM): [D-Pro10]dynorphin A-(1-11) (0.12) approximately dynorphin A-(1-13)NH2 (0.19) > N-cyclopropylmethyl- (2.7) > N,N-dicyclopropylmethyl- (13.2) approximately N,N-diallyl- (18.0) approximately N-benzyl-[D-Pro10]dynorphin A-(1-11) (36.4). The peptides differed in their percent maximal inhibition of adenylyl cyclase activity: dynorphin A-(1-13)NH2 (100%) approximately N-cyclopropylmethyl- (94.3%) approximately [D-Pro10]dynorphin A-(1-11) (87.9%) > N-benzyl- (71.4%) >> N,N-dicyclopropylmethyl- (23.6%) approximately N,N-diallyl-[D-Pro10]dynorphin A-(1-11)(18.9%). As the N,N-dicyclopropylmethyl- and N,N-diallyl-[D-Pro10]dynorphin A-(1-11) derivatives were found to have only weak partial agonist activity with respect to adenylyl cyclase inhibition, they were evaluated for their ability to reverse dynorphin A-(1-13)NH2 (10 nM) inhibition of adenylyl cyclase activity. N,N-dicyclopropylmethyl- and N,N-diallyl-[D-Pro10]dynorphin A-(1-11) reversed dynorphin A-(1-13)NH2 inhibition to levels equal to the maximal inhibition produced by N,N-dicyclopropylmethyl- and N,N-diallyl-[D-Pro10]dynorphin A-(1-11) alone. This weak partial agonism combined with nanomolar potency render the N,N-dicyclopropylmethyl- and N,N-diallyl-[D-Pro10]dynorphin A-(1-11) compounds promising leads for further attempts to synthesize peptide kappa-opioid receptor antagonists.

UI MeSH Term Description Entries
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004174 Diprenorphine A narcotic antagonist similar in action to NALOXONE. It is used to remobilize animals after ETORPHINE neuroleptanalgesia and is considered a specific antagonist to etorphine. Diprenorphine Hydrochloride,Revivon,Hydrochloride, Diprenorphine
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000067956 Adenylyl Cyclase Inhibitors Compounds that bind to and inhibit the action of ADENYLYL CYCLASES. Adenylate Cyclase Inhibitors,Cyclase Inhibitors, Adenylate,Cyclase Inhibitors, Adenylyl,Inhibitors, Adenylate Cyclase,Inhibitors, Adenylyl Cyclase
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations

Related Publications

K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
November 1992, Journal of medicinal chemistry,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
June 1988, The Journal of pharmacology and experimental therapeutics,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
December 1988, British journal of pharmacology,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
January 1988, Proceedings of the National Academy of Sciences of the United States of America,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
November 1984, European journal of pharmacology,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
August 1997, Journal of medicinal chemistry,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
February 1986, Biochemical and biophysical research communications,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
January 1986, NIDA research monograph,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
January 1983, Life sciences,
K Soderstrom, and H Choi, and F W Berman, and J V Aldrich, and T F Murray
January 1983, European journal of pharmacology,
Copied contents to your clipboard!