Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. 1998

D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

To examine the effects of a physiological increase in plasma epinephrine concentration (approximately 800 pg/ml) on muscle glycogenolysis and insulin-stimulated glycogenesis, we infused epinephrine [1.2 micrograms.(m2 body surface)-1.min-1] for 2 h and monitored muscle glycogen and glucose 6-phosphate (G-6-P) concentrations with 13C/31P nuclear magnetic resonance (NMR) spectroscopy. Epinephrine caused an increase in plasma glucose (delta approximately 50 mg/dl), lactate (delta approximately 1.4 mM), free fatty acids (delta approximately 1,200 microM at peak), and whole body glucose oxidation (delta approximately 0.85 mg.kg-1.min-1) compared with levels in a group of control subjects (n = 4) in the presence of slight hyperinsulinemia (approximately 13 microU/ml, n = 8) or basal insulin (approximately 7 microU/ml, n = 7). However, epinephrine did not induce any detectable changes in glycogen or G-6-P concentrations, whereas muscle inorganic phosphate (Pi) decreased by 35%. Epinephrine infusion during a euglycemic-hyperinsulinemic clamp (n = 8) caused a 45% decrease in the glucose infusion rate that could be mostly attributed to a 73% decrease in muscle glycogen synthesis rate. After an initial increase to approximately 160% of basal values, G-6-P levels decreased by approximately 30% with initiation of the epinephrine infusion. We conclude that a physiological increase in plasma epinephrine concentration 1) has a negligible effect on muscle glycogenolysis at rest, 2) decreases muscle Pi, which may maintain phosphorylase activity at a low level, and 3) causes a major impairment in insulin-stimulated muscle glycogen synthesis, possibly due to inhibition of glucose transport-phosphorylation activity.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002153 Calorimetry, Indirect Calculation of the energy expenditure in the form of heat production of the whole body or individual organs based on respiratory gas exchange. Calorimetry, Respiration,Calorimetries, Indirect,Calorimetries, Respiration,Indirect Calorimetries,Indirect Calorimetry,Respiration Calorimetries,Respiration Calorimetry
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids

Related Publications

D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
January 1995, Journal of applied physiology (Bethesda, Md. : 1985),
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
September 2002, American journal of physiology. Endocrinology and metabolism,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
October 1997, Nihon rinsho. Japanese journal of clinical medicine,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
February 1998, Journal of applied physiology (Bethesda, Md. : 1985),
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
February 2015, American journal of physiology. Endocrinology and metabolism,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
February 1987, The Journal of clinical investigation,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
March 2004, American journal of physiology. Endocrinology and metabolism,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
June 1986, The American journal of physiology,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
September 1981, The Journal of clinical investigation,
D Laurent, and K F Petersen, and R R Russell, and G W Cline, and G I Shulman
October 1959, Archives of oral biology,
Copied contents to your clipboard!