Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine. 1998

T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
The Liposome Company, Inc., Princeton, NJ 08540, USA.

N-acyl phosphatidylethanolamines (NAPEs) are natural lipid components of many organisms. N-acylation of unsaturated phosphatidylethanolamines with a saturated fatty acid converts them from non-lamellar organizing lipids into lamellar organizing, acidic lipids which can interact with cations and potentially return to non-lamellar structures. These special properties make NAPEs candidates for fusogens. We tested the fusogenicity of one of the NAPEs, N-dodecanoyl-di-oleoylphosphatidylethanolamine (N-C12-DOPE) mixed with dioleoylphosphatidylcholine (DOPC) in liposomes. Binding and fusion to erythrocyte ghosts in the presence of 3 mM Ca2+ required at least 60 mol% of N-C12-DOPE. Fusion was not observed when phosphatidylglycerol or phosphatidylserine was substituted for N-C12-DOPE, indicating specificity for properties of this lipid. Binding of N-C12-DOPE/DOPC (70:30) liposomes required 1 mM Ca2+ while 1.25 mM Ca2+ and Mg2+ were sufficient for lipid mixing and delivery of encapsulated dextrans to erythrocyte ghosts. These liposomes also bound and possibly mixed lipid with nucleated U-937 cells in a Ca2+ -and endocytosis-dependent manner. Low pH-dependent fusion with ghosts was observed in the absence of any divalent cation, indicating that fusion with U-937 cells could result after endocytosis into the acidic endosomes. The possible mechanisms for N-C12-DOPE mediated binding and fusion and the potential application of these liposomes as delivery vehicles for therapeutic agents are discussed.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
April 1992, Chemistry and physics of lipids,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
December 1968, Biochemical and biophysical research communications,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
May 2020, The Journal of biological chemistry,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
April 2005, Analytical biochemistry,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
January 2022, Methods in molecular biology (Clifton, N.J.),
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
June 2012, Nature communications,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
March 2003, International journal of pharmaceutics,
T Shangguan, and C C Pak, and S Ali, and A S Janoff, and P Meers
June 1973, Journal of chromatography,
Copied contents to your clipboard!