Modulation of nicotinic AChR channels by prostaglandin E2 in chick sympathetic ganglion neurons. 1998

W Tan, and C Du, and S A Siegelbaum, and L W Role
Department of Anatomy and Cell Biology, Center for Neurobiology and Behavior, Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA.

The effects of prostaglandin E2 (PGE2), an important metabolite of arachidonic acid, were studied on the activity of nicotinic AChR channels in cultured chick sympathetic ganglion neurons. In whole cell recordings, PGE2 (25 nM) inhibited significantly the ACh-evoked macroscopic current. In cell-attached patch recordings, PGE2 significantly inhibited single AChR channel currents as a result of a decrease in the frequency of channel opening, with no change in open time and conductance. PGE2 did not alter the extent or rate of agonist-induced desensitization of the AChR channels. These effects are specific since the related compound PGD2 had no effect on AChR channel function. Because there is an abundant endogenous production of PGE2 within sympathetic ganglia in response to certain stimuli, the inhibition of AChR channel function by PGE2 could serve an important role to modulate synaptic transmission in the sympathetic nervous system.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015230 Prostaglandin D2 The principal cyclooxygenase metabolite of arachidonic acid. It is released upon activation of mast cells and is also synthesized by alveolar macrophages. Among its many biological actions, the most important are its bronchoconstrictor, platelet-activating-factor-inhibitory, and cytotoxic effects. 11-Dehydroprostaglandin F2alpha,PGD2,11-Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2alpha,D2, Prostaglandin,F2 alpha, 11-Dehydroprostaglandin,F2alpha, 11-Dehydroprostaglandin,alpha, 11-Dehydroprostaglandin F2

Related Publications

W Tan, and C Du, and S A Siegelbaum, and L W Role
June 1998, The Journal of physiology,
W Tan, and C Du, and S A Siegelbaum, and L W Role
January 1982, Brain research,
W Tan, and C Du, and S A Siegelbaum, and L W Role
July 2002, Molecular and cellular neurosciences,
W Tan, and C Du, and S A Siegelbaum, and L W Role
January 2013, International journal of physiology, pathophysiology and pharmacology,
W Tan, and C Du, and S A Siegelbaum, and L W Role
November 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
W Tan, and C Du, and S A Siegelbaum, and L W Role
January 1997, Pharmacology & toxicology,
W Tan, and C Du, and S A Siegelbaum, and L W Role
August 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Tan, and C Du, and S A Siegelbaum, and L W Role
October 1993, Brain research,
W Tan, and C Du, and S A Siegelbaum, and L W Role
February 1997, Proceedings of the National Academy of Sciences of the United States of America,
W Tan, and C Du, and S A Siegelbaum, and L W Role
April 1982, Brain research,
Copied contents to your clipboard!