Halogenated aromatic hydrocarbons suppress CA1 field excitatory postsynaptic potentials in rat hippocampal slices. 1998

S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843, USA.

Halogenated aromatic hydrocarbons (HAHs), such as polychlorinated biphenyls (PCBs) and dibenzo-p-dioxins (PCDDs), alter cognitive function and learning. The cellular basis of HAH-induced alteration of brain function is not well-understood. The hippocampus is a likely site of toxic action because of its well-known roles in learning and memory, as well as its propensity to accumulate environmental neurotoxicants. A hippocampal function that can be measured readily is evoked excitatory postsynaptic potentials (EPSPs), which are an index of excitatory synaptic function. In this study, effects of HAHs on EPSPs were characterized in hippocampal slices from adolescent to adult male Sprague-Dawley rats. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,4-TCDD were used because these HAHs are prototypical potent and weak aryl hydrocarbon (Ah) receptor agonists, respectively. 2,2',5,5'-Tetrachlorobiphenyl (TCB) was used as a prototypical ortho-substituted PCB, which acts through Ah receptor-independent pathways. For each hippocampal slice, peak amplitudes of EPSPs during a 15-min recording period (1 recording/min) were averaged and used as baseline (100%). Subsequent EPSPs were expressed as percentage of baseline. TCDD and 1,2,3,4-TCDD did not alter EPSPs in slices from the middle third of the hippocampus. However, in ventral slices, TCDD significantly decreased EPSPs, whereas 1,2,3,4-TCDD was inactive. TCB decreased EPSPs in both middle and ventral slices at half-maximal stimulation. An unexpected reversal of inhibition was observed within 30 min of continuous application of TCDD or TCB. In ventral slices, L-type calcium channel blocker nifedipine blocked inhibition of EPSPs induced by TCDD but not EPSPs inhibited by TCB. These results suggest that, while TCB-induced inhibition of EPSPs occurs through an unknown mechanism, TCDD-induced inhibition of EPSPs was mediated by L-type calcium channel activity in a congener-specific manner.

UI MeSH Term Description Entries
D008297 Male Males
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D004785 Environmental Pollutants Substances or energies, for example heat or light, which when introduced into the air, water, or land threaten life or health of individuals or ECOSYSTEMS. Environmental Pollutant,Pollutant,Pollutants,Pollutants, Environmental,Pollutant, Environmental
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000072317 Polychlorinated Dibenzodioxins Dibenzodioxin derivatives that contain multiple chloride atoms bound to the benzene ring structures. TCDD,Tetrachlorodibenzodioxin,2,3,7,8-Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo-p-dioxins,Dibenzo(b,e)(1,4)dioxin, 2,3,7,8-tetrachloro-,PCDD,Polychlorinated Dibenzo-p-dioxins,Polychlorinated Dibenzodioxin,Polychlorodibenzo-4-dioxin,Polychlorodibenzo-p-dioxin,Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo p dioxins,Dibenzo-p-dioxins, Chlorinated,Dibenzo-p-dioxins, Polychlorinated,Dibenzodioxin, Polychlorinated,Dibenzodioxins, Polychlorinated,Polychlorinated Dibenzo p dioxins,Polychlorodibenzo 4 dioxin,Polychlorodibenzo p dioxin,Tetrachlorodibenzo p dioxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
January 2014, Chinese medical journal,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
September 1999, European journal of pharmacology,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
December 2000, Anesthesia and analgesia,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
November 1992, European journal of pharmacology,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
July 1988, Neuroscience letters,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
October 2002, Sheng li xue bao : [Acta physiologica Sinica],
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
December 2020, Heliyon,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
September 2016, Neuroscience letters,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
May 2003, Brain research,
S J Hong, and C A Grover, and S H Safe, and E Tiffany-Castiglioni, and G D Frye
November 1991, Journal of neurophysiology,
Copied contents to your clipboard!