Toxicity of atractyloside in precision-cut rat and porcine renal and hepatic tissue slices. 1998

D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Nigeria.

Atractyloside (ATR) causes acute fatal renal and hepatic necrosis in animals and humans. Precision-cut renal cortical and hepatic slices (200 +/- 15 microns) from adult male Wistar rat and domestic pigs, incubated with ATR (0.2-2.0 mM) for 3 h at 37 degrees C, inhibited pyruvate-stimulated gluconeogenesis in a concentration- and time-dependent manner. p-Aminohippurate accumulation was significantly inhibited in both rat and pig renal cortical slices from 0.2 mM ATR (p < 0.05). There was a small decrease in mitochondrial reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium to formazan in both rat and pig kidney slices, which was significant at > or = 2 mM, but no changes in liver slices from either species. However, cellular ATP was significantly depleted at > or = 0.2 mM ATR in kidney and in liver slices from both species. ATR also caused a marked leakage of lactate dehydrogenase and alkaline phosphatase from both pig and rat kidney slices at all concentrations, but only lactate dehydrogenase was significantly elevated in liver slices from both species. ATR > or = 0.5 mM caused a significant increase in lipid peroxidation, but only in liver slices of both species, and > or = 0.2 mM ATR caused a marked depletion of reduced glutathione and significant increase in oxidized glutathione in both kidney and liver slices of both species. However, GSH to GSSG ratio was only significantly altered in the liver slices, indicating that oxidative stress may be the cause of toxicity in this organ. Both rat and pig tissue slices from the same organ responded similarly to ATR, although their basal biochemistry was different. ATR toxicity to both kidney and liver showed similar patterns but it appears that the mechanisms of toxicity are different. While cytotoxicity of ATR in kidney is only accompanied with GSH depletion, that of the liver is linked to both lipid peroxidation and GSH depletion. Striated muscle slices from both species were not affected by the highest ATR concentration. This further strengthens the argument that the molecular basis of ATR, target selective toxicity, is not a measure of the interaction between ATR and mitochondria and that other factors such as selective uptake are involved. Precision-cut tissue slices show organ-specific toxicity in kidney and liver from both rat and pig and suggest different mechanisms of injury for each organ.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010130 p-Aminohippuric Acid The glycine amide of 4-aminobenzoic acid. Its sodium salt is used as a diagnostic aid to measure effective renal plasma flow (ERPF) and excretory capacity. 4-Aminohippuric Acid,para-Aminohippuric Acid,Aminohippurate Sodium,Aminohippuric Acid,Nephrotest,Sodium Para-Aminohippurate,p-Aminohippurate,4 Aminohippuric Acid,Para-Aminohippurate, Sodium,Sodium Para Aminohippurate,Sodium, Aminohippurate,p Aminohippurate,p Aminohippuric Acid,para Aminohippuric Acid
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005562 Formazans Colored azo compounds formed by the reduction of tetrazolium salts. Employing this reaction, oxidoreductase activity can be determined quantitatively in tissue sections by allowing the enzymes to act on their specific substrates in the presence of tetrazolium salts. Formazan
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
January 2000, In vitro & molecular toxicology,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
October 2001, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
February 1997, Biochemical Society transactions,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
April 1996, Drug metabolism and disposition: the biological fate of chemicals,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
January 2013, Xenobiotica; the fate of foreign compounds in biological systems,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
February 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
November 2016, European journal of pharmacology,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
January 2013, Xenobiotica; the fate of foreign compounds in biological systems,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
January 1995, Archives of toxicology,
D K Obatomi, and S Brant, and V Anthonypillai, and P H Bach
June 1999, Toxicology in vitro : an international journal published in association with BIBRA,
Copied contents to your clipboard!