Coupling between catalysis and oligomeric structure in nucleoside diphosphate kinase. 1998

S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
Unité de Régulation Enzymatique des Activités Cellulaires Institut Pasteur, CNRS URA 1149, 25 rue du Docteur Roux, 75724 Paris, Cedex 15, France.

A dimeric Dictyostelium nucleoside diphosphate kinase has been stabilized by the double mutation P100S-N150stop which targets residues involved in the trimer interface (Karlsson, A., Mesnildrey, S., Xu, Y., Moréra, S., Janin, J., and Veron, M. (1996) J. Biol. Chem. 271, 19928-19934). The reassociation of this dimeric form into a hexamer similar to the wild-type enzyme is induced by the presence of a nucleotide substrate. Equilibrium sedimentation and gel filtration experiments, as well as enzymatic activity measurements, show that reactivation of the enzyme closely parallels its reassociation. A phosphorylatable intermediate with low activity participates in the association pathway while the dimeric form is shown totally devoid of enzymatic activity. Our results support the hypothesis that different oligomeric species of nucleoside diphosphate kinase are involved in different cellular processes where the enzymatic activity is not required.

UI MeSH Term Description Entries
D009701 Nucleoside-Diphosphate Kinase An enzyme that is found in mitochondria and in the soluble cytoplasm of cells. It catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside diphosphate, e.g., UDP, to form ADP and UTP. Many nucleoside diphosphates can act as acceptor, while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.6. Deoxynucleoside Diphosphate Kinases,GDP Kinase,Nucleoside Diphosphokinases,Nucleoside-Diphosphate Kinases,Diphosphate Kinases, Deoxynucleoside,Diphosphokinases, Nucleoside,Kinase, GDP,Kinase, Nucleoside-Diphosphate,Kinases, Deoxynucleoside Diphosphate,Kinases, Nucleoside-Diphosphate,Nucleoside Diphosphate Kinase,Nucleoside Diphosphate Kinases
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001704 Biopolymers Polymers synthesized by living organisms. They play a role in the formation of macromolecular structures and are synthesized via the covalent linkage of biological molecules, especially AMINO ACIDS; NUCLEOTIDES; and CARBOHYDRATES. Bioplastics,Bioplastic,Biopolymer

Related Publications

S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
May 1992, Biochemistry,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
June 2000, Journal of bioenergetics and biomembranes,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
September 1992, The EMBO journal,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
December 2005, Biochemistry. Biokhimiia,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
January 2008, Biofizika,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
February 2002, The Journal of biological chemistry,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
June 2002, Proteins,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
February 1971, FEBS letters,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
December 2005, FEBS letters,
S Mesnildrey, and F Agou, and A Karlsson, and D D Bonne, and M Véron
November 2014, Protein expression and purification,
Copied contents to your clipboard!