Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis. 1998

B C Hill, and J Peterson
Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Hillb@post.queensu.ca

The cytochrome aa3 (600 nm) complex, or menaquinol oxidase, from Bacillus subtilis is a member of the cytochrome oxidase superfamily of respiratory membrane protein complexes. We have characterized some spectral properties of this enzyme and its reaction with cyanide. The magnetic circular dichroism (MCD) spectrum of the oxidized enzyme has a single band at 1560 nm in the near-infrared region assigned to bis-histidine-ligated, low-spin ferricytochrome a. The other heme, cytochrome a3, is presumably high-spin in the oxidized enzyme, as isolated. The absence of a trough in the MCD spectrum at 790 nm, observed previously with mammalian cytochrome c oxidase and assigned to CuA (Greenwood et al., Biochem. J. 215, 303-316, 1983), is consistent with the absence of this center from the menaquinol oxidase. When the heme ligand cyanide is added to oxidized menaquinol oxidase, a new MCD band appears at 2010 nm, while the band at 1560 nm is unperturbed. The new band is assigned to low-spin ferricytochrome a3 bound with cyanide. The long-wavelength position of this cyanide-induced band is proposed to arise from the close interaction of cytochrome a3 with the copper atom, CuB. The kinetics of cyanide binding to oxidized cytochrome aa3(600 nm) reveal a spectrally simple, yet kinetically complex process. The reaction is biphasic with second-order rate constants of 45 and 0.61 M-1s-1 at 1 mM KCN, with each phase constituting about 50% of the overall reaction. When the enzyme is subjected to a cycle of anaerobic reduction and air oxidation, the subsequent reaction with cyanide occurs in a single phase at the faster rate. This behavior is ascribed to different conformations of the binuclear center exhibiting different reactivities with cyanide, and is in keeping with that previously established for the structurally more complex mitochondrial cytochrome c oxidase. However, the electronic spectral characteristics of some of the species involved in these reactions are different in the present bacterial case from those of reported eukaryotic systems.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

B C Hill, and J Peterson
April 1993, Biochemical and biophysical research communications,
B C Hill, and J Peterson
December 1978, Biochimica et biophysica acta,
B C Hill, and J Peterson
October 1984, Antimicrobial agents and chemotherapy,
B C Hill, and J Peterson
September 1989, Journal of bacteriology,
Copied contents to your clipboard!