Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. 1998

R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
Institut für Biologische Chemie, University of Heidelberg, D-69120 Heidelberg, Germany.

The glycyl radical (Gly-734) contained in the active form of pyruvate formate-lyase (PFL) of Escherichia coli is generated by the S-adenosylmethionine-dependent pyruvate formate-lyase-activating enzyme (PFL activase). A 5'-deoxyadenosyl radical intermediate produced by the activase has been suggested as the species that abstracts the pro-S hydrogen of the glycine 734 residue in PFL (Frey, M., Rothe, M., Wagner, A. F. V., and Knappe, J. (1994) J. Biol. Chem. 269, 12432-12437). To enable mechanistic investigations of this system we have worked out a convenient large scale preparation of functionally competent PFL activase from its apoform. The previously inferred metallic cofactor was identified as redox-interconvertible polynuclear iron-sulfur cluster, most probably of the [4Fe-4S] type, according to UV-visible and EPR spectroscopic information. Cys --> Ser replacements by site-directed mutagenesis determined Cys-29, Cys-33, and Cys-36 to be essential to yield active holoenzyme. Gel filtration chromatography showed a monomeric structure (28 kDa) for both the apoenzyme and holoenzyme form. The iron-sulfur cluster complement proved to be a prerequisite for effective binding of adenosylmethionine, which induces a characteristic shift of the EPR signal shape of the reduced enzyme form ([4Fe-4S]+) from axial to rhombic symmetry.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
December 1993, Biochemistry,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
January 1984, Archives of biochemistry and biophysics,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
February 2014, The Journal of biological chemistry,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
April 1996, Journal of bacteriology,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
July 2002, Applied and environmental microbiology,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
March 2000, Biochemical and biophysical research communications,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
October 1988, European journal of biochemistry,
R Külzer, and T Pils, and R Kappl, and J Hüttermann, and J Knappe
August 2017, Journal of the American Chemical Society,
Copied contents to your clipboard!