Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice. 1998

I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
Center for Advanced Biotechnology and Medicine and Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA.

Two proteins have been implicated in the mannose 6-phosphate-dependent transport of lysosomal enzymes to lysosomes: the 300kDa cation-independent and the 46kDa cation-dependent mannose 6-phosphate receptors (CI- and CD-MPRs). The mammalian CI-MPR also mediates endocytosis and clearance of insulin-like growth factor II (IGF-II). Mutant mice that lack the CD-MPR are viable, mice that lack the CI-MPR accumulate high levels of IGF-II and usually die perinatally, whereas mice that lack both IGF-II and CI-MPR are viable. To investigate the relative roles of the MPRs in the targeting of lysosomal enzymes in vivo, we analysed the effect of a deficiency of either MPR on lysosomal enzyme activities in animals lacking IGF-II. In CD-MPR-deficient mice, most activities were relatively normal in solid tissues and some were marginally elevated in serum. In CI-MPR-deficient mice, some enzyme activities were moderately decreased in solid tissues and multiple enzymes were markedly elevated in serum. Finally, total levels of serum mannose 6-phosphorylated glycoproteins were approximately 45-fold and approximately 15-fold higher than wild type in CI- and CD-MPR-deficient mice respectively, and there were specific differences in the pattern of these proteins when comparing CI- and CD-MPR deficient animals. These results indicate that while lack of the CI-MPR appears to perturb lysosome function to a greater degree than lack of the CD-MPR, each MPR has distinct functions for the targeting of lysosomal enzymes in vivo.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D017527 Receptor, IGF Type 2 A receptor that is specific for IGF-II and mannose-6-phosphate. The receptor is a 250-kDa single chain polypeptide which is unrelated in structure to the type 1 IGF receptor (RECEPTOR, IGF TYPE 1) and does not have a tyrosine kinase domain. IGF Type 2 Receptor,IGF-II Receptor,Receptor, IGF-II,Receptor, Insulin-Like Growth Factor II,Receptor, Insulin-Like Growth Factor Type 2,Receptor, Mannose-6-Phosphate,IGF-2 Receptor,Insulin-Like-Growth-Factor II Receptor,Mannose-6-Phosphate Receptor,Receptors, IGF-2,Receptors, Insulin-Like Growth Factor II,IGF 2 Receptor,IGF II Receptor,IGF-2 Receptors,Insulin Like Growth Factor II Receptor,Mannose 6 Phosphate Receptor,Receptor, IGF II,Receptor, IGF-2,Receptor, Insulin Like Growth Factor II,Receptor, Insulin Like Growth Factor Type 2,Receptor, Insulin-Like-Growth-Factor II,Receptor, Mannose 6 Phosphate,Receptors, IGF 2,Receptors, Insulin Like Growth Factor II
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
February 1996, Biochemical Society transactions,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
February 1988, The Journal of biological chemistry,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
May 2017, Molecular neurobiology,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
September 1999, The Journal of biological chemistry,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
October 2000, Biology of reproduction,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
February 1988, Biochemical and biophysical research communications,
I Sohar, and D Sleat, and C Gong Liu, and T Ludwig, and P Lobel
May 1989, The Journal of biological chemistry,
Copied contents to your clipboard!