Viral respiratory infection increases susceptibility of young rats to hypoxia-induced pulmonary edema. 1998

T C Carpenter, and J T Reeves, and A G Durmowicz
Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.

Recent clinical observations of a high incidence of preexisting respiratory infections in pediatric cases of high-altitude pulmonary edema prompted us to ask whether such infections would increase the susceptibility to hypoxia-induced pulmonary edema in young rats. We infected weanling rats with Sendai virus, thus causing a mild respiratory infection. Within 7 days of infection, Sendai virus was essentially undetectable by using viral culture and immunohistochemical techniques. Animals at day 7 of Sendai virus infection were then exposed to normobaric hypoxia (fraction of inspired O2 = 0.1) for 24 h and examined for increases in gravimetric lung water and in vascular permeability, as well as for histological evidence of increased lung water. Bronchoalveolar lavage was performed on a separate series of animals. Compared with control groups, infected hypoxic animals showed significant increases in perivascular cuffing, gravimetric lung water, and lung protein leak. In addition, infected hypoxic animals had increases in lavage fluid cell counts and protein content compared with controls. We conclude that young rats, exposed to moderate hypoxia while recovering from a mild viral respiratory infection, may demonstrate evidence of early pulmonary edema formation, a finding of potential relevance to human high-altitude pulmonary edema.

UI MeSH Term Description Entries
D008297 Male Males
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D015633 Extravascular Lung Water Water content outside of the lung vasculature. About 80% of a normal lung is made up of water, including intracellular, interstitial, and blood water. Failure to maintain the normal homeostatic fluid exchange between the vascular space and the interstitium of the lungs can result in PULMONARY EDEMA and flooding of the alveolar space. Lung Water, Extravascular,Extra Vascular Lung Water,Lung Water, Extra Vascular,Water, Extravascular Lung
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

T C Carpenter, and J T Reeves, and A G Durmowicz
December 2005, American journal of physiology. Lung cellular and molecular physiology,
T C Carpenter, and J T Reeves, and A G Durmowicz
October 2018, Respiratory physiology & neurobiology,
T C Carpenter, and J T Reeves, and A G Durmowicz
July 2016, Nutrients,
T C Carpenter, and J T Reeves, and A G Durmowicz
October 2022, Pflugers Archiv : European journal of physiology,
T C Carpenter, and J T Reeves, and A G Durmowicz
September 2009, Experimental lung research,
T C Carpenter, and J T Reeves, and A G Durmowicz
December 1998, Environmental toxicology and pharmacology,
T C Carpenter, and J T Reeves, and A G Durmowicz
June 1989, Ma zui xue za zhi = Anaesthesiologica Sinica,
T C Carpenter, and J T Reeves, and A G Durmowicz
September 2000, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!