Ultrastructural localization of nitric oxide synthase immunoreactivity in the cat ventrobasal complex. 1997

X W Meng, and P T Ohara, and H J Ralston
Department of Anatomy and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco 94143-0452, USA.

This study describes the ultrastructural localization of nitric oxide synthase (NOS) immunoreactivity in the cat ventrobasal complex. NOS immunoreactivity was found in the cell bodies and dendrites of local circuit neurons and in vesicle-containing profiles. The vesicle-containing profiles could be divided into two classes, those of dendritic origin (presynaptic dendrite boutons) and those of axonal origin. The NOS labelled axon terminals varied in size and packing density and were principally located in the extra-glomerular neuropil. These boutons presented a range of morphologies and it was not possible to determine the probable source based on morphological criteria. The NOS immunoreactive presynaptic dendrite boutons were found both within and outside glomeruli and established both pre- and post-synaptic relationships with other elements. Post-embedding GABA immunocytochemistry showed that some NOS immunoreactive axonal boutons and presynaptic dendrites were also immunopositive for GABA. This finding suggests that some of the NOS labelled axonal boutons are of local circuit neuron origin. These results suggest that local circuit neurons in the cat ventrobasal complex might be involved in specific, short range interactions using GABA and longer, more global interactions using nitric oxide.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron

Related Publications

X W Meng, and P T Ohara, and H J Ralston
June 1997, Neuroscience letters,
X W Meng, and P T Ohara, and H J Ralston
April 1992, Brain research,
X W Meng, and P T Ohara, and H J Ralston
January 1995, The American journal of physiology,
X W Meng, and P T Ohara, and H J Ralston
June 1993, Neuroscience,
X W Meng, and P T Ohara, and H J Ralston
August 1994, Histochemistry,
X W Meng, and P T Ohara, and H J Ralston
April 1994, The American journal of physiology,
X W Meng, and P T Ohara, and H J Ralston
September 1999, Anatomy and embryology,
X W Meng, and P T Ohara, and H J Ralston
July 2007, Parasitology research,
X W Meng, and P T Ohara, and H J Ralston
April 2001, European journal of morphology,
Copied contents to your clipboard!