Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. 1998

C K Kellogg, and G B Awatramani, and D T Piekut
Department of Brain and Cognitive Sciences, University of Rochester, NY 14627, USA.

Adult-typical behavioural responses to environmental challenges as well as the stressor responsiveness of several neural systems emerge over adolescent development. The present study was undertaken to determine whether stressors might activate different neural populations in adult vs juvenile male rats. Fos-immunoreactivity was determined in various forebrain nuclei following 15 min or 2 h of restraint in 28- and 60-day-old male rats (representing late juvenile and young adult ages, respectively) and compared to non-restrained control animals at each age. Few Fos-positive cells were identified in unrestrained controls at either age. Restraint, however, induced the production of Fos in several areas. Fos immunoreactivity was marked in parvocellular regions of the paraventricular nucleus of the hypothalamus following both restraint periods and at both ages, an observation consistent with previous observations that restraint increases plasma corticosterone at both ages. And at both ages, Fos immunoreactivity was evident in magnocellular regions of the hypothalamus only following the longer restraint period. Fos immunoreactivity, however, clearly varied as a function of adolescent age in several regions. Moderate to intense Fos immunoreactivity was observed in adults in all divisions of the anterior olfactory nucleus, cortical and medial amygdaloid nuclei, pyriform cortex and tenia tecta. In contrast to the adult, only a few Fos positive cells were observed in any of these regions in juveniles. Exposure to the same stressor induced Fos in a broader spectrum of neurons in young adult than in juvenile male rats. The lack of Fos-positive cells in specific areas of juveniles may relate to maturation in specific amygdaloid nuclei, which project to many of the other regions that showed age-related differences in Fos production. The emergence over adolescence of Fos-positive cells in specific areas in response to stressors may underlie the emergence of adult-typical behavioural and neural stressor-responsiveness.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C K Kellogg, and G B Awatramani, and D T Piekut
June 2012, Behavioural brain research,
C K Kellogg, and G B Awatramani, and D T Piekut
November 1994, The Journal of comparative neurology,
C K Kellogg, and G B Awatramani, and D T Piekut
April 1999, The American journal of physiology,
C K Kellogg, and G B Awatramani, and D T Piekut
November 1990, Neuroscience letters,
C K Kellogg, and G B Awatramani, and D T Piekut
January 1995, Brain research bulletin,
C K Kellogg, and G B Awatramani, and D T Piekut
March 1992, Neuroscience letters,
C K Kellogg, and G B Awatramani, and D T Piekut
March 1994, Annals of the New York Academy of Sciences,
C K Kellogg, and G B Awatramani, and D T Piekut
March 1987, European journal of pharmacology,
C K Kellogg, and G B Awatramani, and D T Piekut
January 1994, The British veterinary journal,
Copied contents to your clipboard!