Calcium binding studies of photosystem II using a calcium-selective electrode. 1998

G N Grove, and G W Brudvig
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA.

The identification of Ca2+ as a cofactor in photosynthetic O2 evolution has encouraged research into the role of Ca2+ in photosystem II (PSII). Previous methods used to identify the number of binding sites and their affinities were not able to measure Ca2+ binding at thermodynamic equilibrium. We introduce the use of a Ca2(+)-selective electrode to study equilibrium binding of Ca2+ to PSII. The number and affinities of binding sites were determined via Scatchard analysis on a series of PSII membrane preparations progressively depleted of the extrinsic polypeptides and Mn. Untreated PSII membranes bound approximately 4 Ca2+ per PSII with high affinity (K = 1.8 microM) and a larger number of Ca2+ with lower affinity. The high-affinity sites are assigned to divalent cation-binding sites on the light-harvesting complex II that are involved in membrane stacking, and the lower-affinity sites are attributed to nonspecific surface-binding sites. These sites were also observed in all of the extrinsic polypeptide- and Mn-depleted preparations. Depletion of the extrinsic polypeptides and/or Mn exposed additional very high-affinity Ca2(+)-binding sites which were not in equilibrium with free Ca2+ in untreated PSII, owing to the diffusion barrier created by the extrinsic polypeptides. Ca2(+)-depleted PSII membranes lacking the 23 and 17 kDa extrinsic proteins bound an additional 2.5 Ca2+ per PSII with K = 0.15 microM. This number of very high-affinity Ca2(+)-binding sites agrees with the previous work of Cheniae and co-workers [Kalosaka, K., et al. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., Ed.) pp 721-724, Kluwer, Dordrecht, The Netherlands] whose procedure for Ca2+ depletion was used. Further depletion of the 33 kDa extrinsic protein yielded a sample that bound only 0.7 very high-affinity Ca2+ per PSII with K = 0.19 microM. The loss of 2 very high-affinity Ca2(+)-binding sites upon depletion of the 33 kDa extrinsic protein could be due to a structural change of the O2-evolving complex which lost 2-3 of the 4 Mn ions in this sample. Finally, PSII membranes depleted of Mn and the 33, 23, and 17 kDa extrinsic proteins bound approximately 4 very high-affinity Ca2+ per PSII with K = 0.08 microM. These sites are assigned to Ca2+ binding to the vacant Mn sites.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D017736 Ion-Selective Electrodes Electrodes which can be used to measure the concentration of particular ions in cells, tissues, or solutions. Electrodes, Ion-Selective,Ion Selective Electrode,Ion-Sensitive Electrode,Ion-Sensitive Electrodes,Electrode, Ion Selective,Electrode, Ion-Selective,Electrode, Ion-Sensitive,Electrodes, Ion Selective,Electrodes, Ion-Sensitive,Ion Selective Electrodes,Ion Sensitive Electrode,Ion Sensitive Electrodes,Ion-Selective Electrode,Selective Electrode, Ion,Selective Electrodes, Ion
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D045332 Photosystem II Protein Complex A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN. Chloroplast Reaction Center Protein D1,D1 Photosystem II Protein, Plant,Light-Induced D1 Protein, Photosystem II,Oxygen Evolving Enzyme,PRCP II D2 Protein,Photosystem II,Photosystem II Reaction Center,Photosystem II Reaction Center Complex D1 Protein,Photosystem II Reaction Center Complex D2 Protein,RCII-D1 Protein,Water Oxidase,Water-Splitting Enzyme of Photosynthesis,Enzyme, Oxygen Evolving,Evolving Enzyme, Oxygen,Light Induced D1 Protein, Photosystem II,Oxidase, Water,Photosynthesis Water-Splitting Enzyme,Water Splitting Enzyme of Photosynthesis

Related Publications

G N Grove, and G W Brudvig
July 1995, Biochemistry,
G N Grove, and G W Brudvig
May 1994, Biochemical Society transactions,
G N Grove, and G W Brudvig
May 1990, Journal of lipid research,
G N Grove, and G W Brudvig
October 1983, Plant physiology,
G N Grove, and G W Brudvig
January 1971, Clinical orthopaedics and related research,
G N Grove, and G W Brudvig
April 2000, The Journal of biological chemistry,
G N Grove, and G W Brudvig
January 1972, Deutsche medizinische Wochenschrift (1946),
G N Grove, and G W Brudvig
November 1996, Biochimica et biophysica acta,
Copied contents to your clipboard!