Identification of the covalent flavin attachment site in sarcosine oxidase. 1998

L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
Department of Biochemistry, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.

Sarcosine oxidase from Corynebacterium sp. P-1 is a heterotetrameric enzyme (alphabetagammadelta) that contains two noncovalently bound coenzymes (FAD, NAD+) and covalently bound FMN [8alpha-(N3-histidyl)FMN] which is attached to the beta subunit. Chlumsky et al. [(1995) J. Biol. Chem. 270, 18252-18259] tentatively identified His175 as the covalent FMN attachment site in the beta subunit, based on an alignment of the sequence of C. sp. P-1 beta subunit with a highly homologous flavin-containing peptide from another corynebacterial sarcosine oxidase (C. sp. U-96). To test this hypothesis, His175 in the C. sp. P-1 beta subunit was mutated to an alanine. Unexpectedly, the mutant enzyme was found to contain 1 mol of covalently bound flavin and to exhibit catalytic activity similar to wild-type enzyme. Covalent flavin-containing peptides were isolated from wild-type and mutant enzymes and analyzed by electrospray mass spectrometry. The mass observed for the mutant peptide (1152.4 Da) matched that predicted for an FMN-containing hexapeptide, corresponding to residues 173-178 (1152.1 Da). In the mutant, this region (HDAVAW) contains a single histidine (His173) which must be the covalent flavin attachment site. The mass observed for the wild-type peptide (1218.6 Da) matched that predicted for an FMN-containing hexapeptide, also corresponding to residues 173-178 in the beta subunit (1218.2 Da). This region in the wild-type enzyme includes two histidine residues (HDHVAW). Attempts to sequence the wild-type or mutant peptides by automated Edman degradation were unsuccessful. Instead, the peptide sequences were investigated by collisional-activated dissociation (CAD) and tandem mass spectrometry. The CAD mass spectral data with the mutant peptide confirmed the sequence deduced based on the mass of the intact peptide. The CAD mass spectral results with the wild-type peptide showed that FMN was covalently attached to the N-terminal histidine in the hexapeptide, which corresponds to His173 in the beta subunit.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
August 2006, Biochemistry,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
September 2006, Journal of molecular biology,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
August 2000, Biochemistry,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
October 1986, Biochemistry,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
January 2008, Biochemistry,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
July 1996, Applied and environmental microbiology,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
September 2008, Biochemistry,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
October 2000, Protein expression and purification,
L J Chlumsky, and A W Sturgess, and E Nieves, and M S Jorns
October 2014, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
Copied contents to your clipboard!