Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). 1998

B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
Department of Physiology, University of California, School of Medicine, Los Angeles 90095-1760, USA.

Three distinct mammalian Na+/Ca2+ exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken a detailed functional comparison of these three exchangers. Each exchanger was stably expressed at high levels in the plasma membranes of BHK cells. Na+/Ca2+ exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent 45Ca2+ uptake into intact cells, Na+ gradient-dependent 45Ca2+ uptake into membrane vesicles isolated from the transfected cells, and exchange currents measured using giant patches of excised cell membrane. Apparent affinities for the transported ions Na+ and Ca2+ were markedly similar for the three exchangers at both membrane surfaces. Likewise, generally similar responses to changes in pH, chymotrypsin treatment, and application of various inhibitors were obtained. Depletion of cellular ATP inhibited NCX1 and NCX2 but did not affect the activity of NCX3. Exchange activities of NCX1 and NCX3 were modestly increased by agents that activate protein kinases A and C. All exchangers were regulated by intracellular Ca2+. NCX1-induced exchange currents were especially large in excised patches and, like the native myocardial exchanger, were stimulated by ATP. Results may be influenced by our choice of expression system and specific splice variants, but, overall, the three exchangers appear to have very similar properties.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
April 1997, The American journal of physiology,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
October 2002, Neuroscience letters,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
March 2007, Cell calcium,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
September 2012, Journal of neurochemistry,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
November 2002, Annals of the New York Academy of Sciences,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
November 2002, Annals of the New York Academy of Sciences,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
November 2002, Annals of the New York Academy of Sciences,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
October 2016, Naunyn-Schmiedeberg's archives of pharmacology,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
January 2008, Brain research,
B Linck, and Z Qiu, and Z He, and Q Tong, and D W Hilgemann, and K D Philipson
December 1998, Biochemistry,
Copied contents to your clipboard!