Regulation of sorbitol content in cultured porcine urinary bladder epithelial cells. 1998

S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
Institut für Arbeitsphysiologie, Universität Dortmund, Germany.

Sorbitol content was determined in porcine urinary bladder epithelial cells immediately after death of the animals and after primary culture of the cells at different osmolalities. In both instances, sorbitol content increased with urine and medium osmolality, respectively. For example, at 300 mosmol/kg the cultured cells contained 0.84 +/- 0.02 nmol/mg protein, at 600 mosmol/kg contained 21.7 +/- 0.95 nmol/mg protein, and at 900 mosmol/kg contained 59.5 +/- 2.8 nmol/mg protein. Similarly, aldose reductase activity rose from 0.27 +/- 0.04 mumol.h-1.mg protein-1 at 300 mosmol/kg to 1.81 +/- 0.16 at 600 mosmol/kg and to 3.02 +/- 0.33 at 900 mosmol/kg. These changes were, however, only observed when NaCl but not when urea was used to augment the medium osmolality, since urea equilibrated across the cell membrane. In contrast, sorbitol release from cells cultured at 900 mosmol/kg was slowest into a 900 mosmol/kg medium and fastest into a 300 mosmol/kg medium (63 +/- 16 nmol/10 min compared with 389 +/- 52 nmol/10 min). These studies demonstrate that the sorbitol content of porcine urinary bladder epithelium is regulated by changes both in sorbitol synthesis and sorbitol release. Thus the regulatory mechanisms in the urinary bladder seem to be similar to those present in the embryological related collecting duct.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000449 Aldehyde Reductase An enzyme that catalyzes reversibly the oxidation of an aldose to an alditol. It possesses broad specificity for many aldoses. EC 1.1.1.21. Aldose Reductase,Aldose Reductase Ia,Aldose Reductase Ib,Erythrose Reductase,Xylose Reductase,Reductase Ia, Aldose,Reductase Ib, Aldose,Reductase, Aldehyde,Reductase, Aldose,Reductase, Erythrose,Reductase, Xylose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl

Related Publications

S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
October 1997, Toxicology in vitro : an international journal published in association with BIBRA,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
March 2003, Mycotoxin research,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
February 1994, The American journal of physiology,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
January 1977, Cancer research,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
January 1995, Archives of toxicology,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
December 1989, The American journal of physiology,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
January 1992, Urological research,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
January 1996, Pflugers Archiv : European journal of physiology,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
August 1994, Toxicology in vitro : an international journal published in association with BIBRA,
S Mähler, and E Kinne-Saffran, and H Fujisue, and R K Kinne, and W Föllmann
April 2003, Acta ophthalmologica Scandinavica,
Copied contents to your clipboard!