Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. 1998

K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
Laboratory of Heart Electrophysiology, Cardiology Research Center, Moscow, Russia.

With the whole cell patch-clamp technique, we studied the effects of the n-3 and n-6 polyunsaturated fatty acids (PUFAs), linoleic (C18:2n-6), eicosapentaenoic (C20:4n-3), docosahexaenoic (C22:5n-3), and arachidonic (AA; C20:4n-6) acids, on K+ currents in rat ventricular myocytes. At low concentrations (5-10 microM) all PUFAs except AA inhibited, by approximately 40%, the transient outward current (I(to)) without affecting other K+ currents and markedly prolonged the action potential (AP). AA inhibited I(to) but also augmented a sustained depolarization-induced outward K+ current (Isus); the latter effect did not occur in the presence of 4-aminopyridine or with eicosatetraynoic acid, a nonmetabolizable analog of AA. Higher concentrations of PUFAs (20-50 microM) further inhibited I(to) and also inhibited Isus. Thus, at high concentrations, PUFAs have a nonspecific effect on several K+ channels; at low concentrations, PUFAs preferentially inhibit I(to) and prolong the AP.

UI MeSH Term Description Entries
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015118 Eicosapentaenoic Acid Important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. 5,8,11,14,17-Eicosapentaenoic Acid,Icosapent,5,8,11,14,17-Icosapentaenoic Acid,Eicosapentanoic Acid,Timnodonic Acid,omega-3-Eicosapentaenoic Acid,Acid, Eicosapentanoic,omega 3 Eicosapentaenoic Acid
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015525 Fatty Acids, Omega-3 A group of unsaturated fatty acids occurring mainly in fish oils, with three double bonds at particular positions in the hydrocarbon chain. N-3 Fatty Acid,Omega-3 Fatty Acid,Omega-3 Fatty Acids,n-3 Fatty Acids,n-3 Oil,n3 Oil,Omega 3 Fatty Acids,n-3 Oils,n-3 PUFA,n-3 Polyunsaturated Fatty Acid,n3 Fatty Acid,n3 Oils,n3 PUFA,n3 Polyunsaturated Fatty Acid,Acid, N-3 Fatty,Acid, Omega-3 Fatty,Fatty Acid, N-3,Fatty Acid, Omega-3,Fatty Acid, n3,N 3 Fatty Acid,Oil, n-3,Oil, n3,Omega 3 Fatty Acid,PUFA, n-3,PUFA, n3,n 3 Fatty Acids,n 3 Oil,n 3 Oils,n 3 PUFA,n 3 Polyunsaturated Fatty Acid
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
September 1993, Cardiovascular research,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
September 1998, The Journal of physiology,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
February 1997, Sheng li xue bao : [Acta physiologica Sinica],
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
November 1989, The American journal of physiology,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
October 1993, Pflugers Archiv : European journal of physiology,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
August 1991, The American journal of physiology,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
July 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
February 1997, Journal of molecular and cellular cardiology,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
March 2005, General physiology and biophysics,
K Y Bogdanov, and H A Spurgeon, and T M Vinogradova, and E G Lakatta
June 1993, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!