Differential influence of rat liver fatty acid binding protein isoforms on phospholipid fatty acid composition: phosphatidic acid biosynthesis and phospholipid fatty acid remodeling. 1998

C A Jolly, and E J Murphy, and F Schroeder
Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466, USA.

The ability of two rat liver fatty acid binding protein (L-FABP) isoforms to influence microsomal phosphatidic acid biosynthesis, a key intermediate in glycerolipid formation, and phospholipid fatty acid remodeling was examined in vitro. Isoform I enhanced microsomal incorporation of [1-14C]-oleoyl-CoA into phosphatidic acid 7-fold while isoform II had no effect relative to basal. In contrast, isoform II enhanced microsomal incorporation of [1-14C]-palmitoyl-CoA into phosphatidic acid 4-fold while isoform I had no effect. These results suggest that each L-FABP isoform selectively utilized different acyl-CoAs for glycerol-3-phosphate esterification. Both isoforms stimulated phosphatidic acid formation by increasing glycerol-3-phosphate acyltransferase activity, not by increasing lysophosphatidic acid acyltransferase activity. Furthermore, the effects of L-FABP on phosphatidic acid biosynthesis could not be correlated with protection from acyl-CoA hydrolysis. L-FABP isoforms also influenced phospholipid fatty acid remodeling in a phospholipid-dependent manner. Isoform I preferentially enhanced oleate and palmitate esterification into phosphatidylethanol-amine, while isoform II stimulated esterification into phosphatidylcholine, phosphatidylserine and sphingomyelin. Taken together, these data demonstrated a unique role of each L-FABP isoform in modulating microsomally derived phospholipid fatty acid composition. (c) 1998 Elsevier Science B.V.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010170 Palmitoyl-CoA Hydrolase Enzyme catalyzing reversibly the hydrolysis of palmitoyl-CoA or other long-chain acyl coenzyme A compounds to yield CoA and palmitate or other acyl esters. The enzyme is involved in the esterification of fatty acids to form triglycerides. EC 3.1.2.2. Acyl CoA Hydrolase,Fatty Acyl Thioesterase,Palmitoyl CoA Deacylase,Palmitoyl Coenzyme A Hydrolase,Palmitoyl Thioesterase,Long-Chain Fatty-Acyl-CoA Hydrolase,Oleoyl-CoA Acylhydrolase,Stearoyl CoA Hydrolase,Thioesterase I,Acylhydrolase, Oleoyl-CoA,CoA Deacylase, Palmitoyl,CoA Hydrolase, Acyl,CoA Hydrolase, Stearoyl,Deacylase, Palmitoyl CoA,Fatty-Acyl-CoA Hydrolase, Long-Chain,Hydrolase, Acyl CoA,Hydrolase, Long-Chain Fatty-Acyl-CoA,Hydrolase, Palmitoyl-CoA,Hydrolase, Stearoyl CoA,Long Chain Fatty Acyl CoA Hydrolase,Oleoyl CoA Acylhydrolase,Palmitoyl CoA Hydrolase,Thioesterase, Fatty Acyl,Thioesterase, Palmitoyl
D010171 Palmitoyl Coenzyme A A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. Palmitoyl CoA,Hexadecanoyl CoA,Palmityl CoA,CoA, Hexadecanoyl,CoA, Palmitoyl,CoA, Palmityl,Coenzyme A, Palmitoyl
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids

Related Publications

C A Jolly, and E J Murphy, and F Schroeder
March 1989, Biological chemistry Hoppe-Seyler,
C A Jolly, and E J Murphy, and F Schroeder
April 1965, Journal of lipid research,
C A Jolly, and E J Murphy, and F Schroeder
May 2000, Biochimica et biophysica acta,
C A Jolly, and E J Murphy, and F Schroeder
January 2001, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
C A Jolly, and E J Murphy, and F Schroeder
February 1987, Journal of lipid research,
C A Jolly, and E J Murphy, and F Schroeder
September 2011, The Journal of biological chemistry,
C A Jolly, and E J Murphy, and F Schroeder
August 1997, Zhonghua yi xue za zhi,
C A Jolly, and E J Murphy, and F Schroeder
January 1989, Journal of lipid mediators,
Copied contents to your clipboard!