Role of Arg-gingipain A in virulence of Porphyromonas gingivalis. 1998

M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
Department of Oral Biology, State University of New York, Buffalo 14214, USA.

In order to access the role of the Porphyromonas gingivalis Arg-gingipain proteases in the virulence of this organism, a mutant defective in the rgpA gene was constructed in strain 381. This mutant, MT10, displayed only 40% of the Arg-specific cysteine protease activity of the wild-type strain. In addition, MT10, as well as the recently characterized protease mutant G-102, which is defective in the rgpB gene, displayed reduced self-aggregation, hemagglutination, and the ability to bind to immobilized type I collagen compared to levels of the wild-type parent. However, unlike mutant G-102, the rgpA mutant displayed increased binding to epithelial cells relative to that of the parental organism. Mutant MT10 also did not express detectable levels of the FimA protein as assessed by both Western and Northern blotting or fimbriae visible by electron microscopy of the cells. Furthermore, the ability of MT10 to degrade rat tail collagen fibers when it was cultured at 37 degrees C was markedly attenuated compared to that of strain 381. These results suggest that Arg-gingipain A may play a significant role in the pathogenicity of P. gingivalis by altering the colonization and toxic properties of the organism.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006388 Hemagglutinins Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc. Isohemagglutinins,Exohemagglutinins,Hemagglutinin
D000080867 Gingipain Cysteine Endopeptidases Cysteine endoproteinases, from periodontal pathogen PORPHYROMONAS GINGIVALIS, acting as virulence factors associated with PERIODONTITIS. They are produced as pre-proproteins which mature into ARGININE and LYSINE specific endopeptidases. Arg-Gingipain,Arginine Gingipain,Gingipain,Gingipain K,Gingipain Proteases,KGP Protease,Lys-Gingipain,Lysine Gingipain,RGP-2 Gingipain,RGPB Protein,Argingipain,Gingipain R,Gingipain R1,Gingipain R2,Gingipains,Arg Gingipain,Cysteine Endopeptidases, Gingipain,Gingipain, Arginine,Gingipain, Lysine,Gingipain, RGP-2,Lys Gingipain,RGP 2 Gingipain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity
D016966 Porphyromonas gingivalis A species of gram-negative, anaerobic, rod-shaped bacteria originally classified within the BACTEROIDES genus. This bacterium produces a cell-bound, oxygen-sensitive collagenase and is isolated from the human mouth. Bacteroides gingivalis

Related Publications

M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
April 2003, FEMS microbiology letters,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
May 2013, FEBS letters,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
August 2001, Oral microbiology and immunology,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
August 2000, Microbiology (Reading, England),
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
May 1996, Journal of bacteriology,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
April 2001, Oral microbiology and immunology,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
August 2005, Infection and immunity,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
December 2012, Biological chemistry,
M Tokuda, and T Karunakaran, and M Duncan, and N Hamada, and H Kuramitsu
December 2018, Journal of bacteriology,
Copied contents to your clipboard!