Cytoskeletal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret. 1998

C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA.

1. Biochemical and quantitative image analysis methods were used to investigate the anatomical basis for the previously described agonist-induced redistribution of calponin. 2. At 140 nm resolution, the quantitative distribution of calponin in resting cells was statistically indistinguishable from that of filament bundles containing alpha-smooth muscle actin and myosin, but was significantly different from that of filaments containing beta-non-muscle actin. Conversely, in stimulated cells, the distribution of calponin was not significantly different from that of beta-actin filaments in the subplasmalemmal cell cortex but was significantly different from the distribution of alpha-actin- and myosin-containing filamentous bundles. 3. The distribution of calponin significantly differed from that of the intermediate filament proteins vimentin and desmin as well as that of the dense body protein alpha-actinin either by ratio analysis of the subcellular distribution or by colocalization analysis. 4. The imaging results, although limited to 140 nm spatial resolution, suggested the hypothesis that the agonist-induced redistribution involves the binding of calponin to isoform-specific actin filaments. This hypothesis was tested by quantifying the relative affinity of calponin for purified alpha- and beta-actin. Light scattering measurements showed that calponin induces bundle formation with beta-actin more readily than alpha-actin, indicating that calponin may be preferentially sequestered by beta-actin under appropriate conditions. 5. These results are consistent with a model whereby agonist activation decreases calponin's binding to filaments, but the tighter binding to beta-actin filaments results in a spatial redistribution of calponin to the submembranous cortex.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European

Related Publications

C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
October 1994, Sheng li ke xue jin zhan [Progress in physiology],
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
February 1992, Developmental biology,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
March 1994, Journal of cell science,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
April 2002, The Journal of physiology,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
May 2004, Journal of applied physiology (Bethesda, Md. : 1985),
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
January 2013, BioMed research international,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
October 1997, The Journal of biological chemistry,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
September 2012, The Journal of physiology,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
June 2000, Tissue & cell,
C A Parker, and K Takahashi, and J X Tang, and T Tao, and K G Morgan
February 2012, Cell biology international,
Copied contents to your clipboard!