Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. 1998

K Hashimoto, and M Kano
Department of Physiology, Jichi Medical School, Tochigi, Japan.

1. Climbing fibre-mediated excitatory postsynaptic potentials (CF-EPSPs) or currents (CF-EPSCs) were recorded from Purkinje cells in rat cerebellar slices using the whole-cell recording technique. 2. Climbing fibre responses displayed prominent paired-pulse depression (PPD). In the current-clamp recording mode, PPD resulted in a decreased number of spikelets in the second complex spike of the pair, and depression of the after-depolarization and after-hyperpolarization. 3. The mechanism of PPD was examined under voltage clamp. Manipulations that reduce transmitter release significantly affected PPD. These included lowering extracellular Ca2+ concentration and bath application of baclofen or adenosine. 4. Changing the number of stimulated climbing fibres, equivalent to changing the number of release sites, had no effect on PPD. 5. Selective manipulations of postsynaptic responsiveness had no effect on PPD. These included partial blockade of CF-EPSCs by a non-NMDA receptor antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and changing the holding potential. 6. A rapidly dissociating AMPA receptor antagonist, 2,3-cis-piperidine dicarboxylic acid, inhibited the second CF-EPSC of the pair proportionately more than the first, suggesting that presynaptic release by the second pulse is decreased. 7. PPD at interstimulus intervals of 50 ms or longer (up to 3000 ms) was not significantly affected by manipulations that change postsynaptic glutamate receptor desensitization. 8. Blockade of metabotropic glutamate, GABAB and adenosine receptors had no effect on PPD, suggesting that presynaptic autoreceptors do not contribute to PPD. 9. These results indicate that decreased transmitter release is a major cause of PPD at cerebellar climbing fibre-Purkinje cell synapses.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010875 Pipecolic Acids Acids, Pipecolic
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003981 Diazoxide A benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. Hyperstat,Proglycem
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

K Hashimoto, and M Kano
September 2009, The Journal of physiology,
K Hashimoto, and M Kano
October 2001, The European journal of neuroscience,
K Hashimoto, and M Kano
March 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Hashimoto, and M Kano
December 2014, Brain : a journal of neurology,
K Hashimoto, and M Kano
October 2001, Neuron,
Copied contents to your clipboard!