Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements. 1998

D E Marple-Horvat, and J M Criado, and D M Armstrong
Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, UK. D.E.Marple-Horvat@bris.ac.uk

1. The discharge patterns of 166 lateral cerebellar neurones were studied in cats at rest and during visually guided stepping on a horizontal circular ladder. A hundred and twelve cells were tested against one or both of two visual stimuli: a brief full-field flash of light delivered during eating or rest, and a rung which moved up as the cat approached. Forty-five cells (40%) gave a short latency response to one or both of these stimuli. These visually responsive neurones were found in hemispheral cortex (rather than paravermal) and the lateral cerebellar nucleus (rather than nucleus interpositus). 2. Thirty-seven cells (of 103 tested, 36%) responded to flash. The cortical visual response (mean onset latency 38 ms) was usually an increase in Purkinje cell discharge rate, of around 50 impulses s-1 and representing 1 or 2 additional spikes per trial (1.6 on average). The nuclear response to flash (mean onset latency 27 ms) was usually an increased discharge rate which was shorter lived and converted rapidly to a depression of discharge or return to control levels, so that there were on average only an additional 0.6 spikes per trial. A straightforward explanation of the difference between the cortical and nuclear response would be that the increased inhibitory Purkinje cell output cuts short the nuclear response. 3. A higher proportion of cells responded to rung movement, sixteen of twenty-five tested (64%). Again most responded with increased discharge, which had longer latency than the flash response (first change in dentate output ca 60 ms after start of movement) and longer duration. Peak frequency changes were twice the size of those in response to flash, at 100 impulses s-1 on average and additional spikes per trial were correspondingly 3-4 times higher. Both cortical and nuclear responses were context dependent, being larger when the rung moved when the cat was closer than further away. 4. A quarter of cells (20 of 84 tested, 24%) modulated their activity in advance of saccades, increasing their discharge rate. Four-fifths of these were non-reciprocally directionally selective. Saccade-related neurones were usually susceptible to other influences, i.e. their activity was not wholly explicable in terms of saccade parameters. 5. Substantial numbers of visually responsive neurones also discharged in relation to stepping movements while other visually responsive neurones discharged in advance of saccadic eye movements. And more than half the cells tested were active in relation both to eye movements and to stepping movements. These combinations of properties qualify even individual cerebellar neurones to participate in the co-ordination of visually guided eye and limb movements.

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012438 Saccades An abrupt voluntary shift in ocular fixation from one point to another, as occurs in reading. Pursuit, Saccadic,Saccadic Eye Movements,Eye Movement, Saccadic,Eye Movements, Saccadic,Movement, Saccadic Eye,Movements, Saccadic Eye,Pursuits, Saccadic,Saccade,Saccadic Eye Movement,Saccadic Pursuit,Saccadic Pursuits

Related Publications

D E Marple-Horvat, and J M Criado, and D M Armstrong
September 1990, The Journal of physiology,
D E Marple-Horvat, and J M Criado, and D M Armstrong
August 1991, Journal of neurophysiology,
D E Marple-Horvat, and J M Criado, and D M Armstrong
January 1995, Experimental brain research,
D E Marple-Horvat, and J M Criado, and D M Armstrong
January 1989, Functional neurology,
D E Marple-Horvat, and J M Criado, and D M Armstrong
May 1997, Schizophrenia research,
D E Marple-Horvat, and J M Criado, and D M Armstrong
September 1978, Perception & psychophysics,
D E Marple-Horvat, and J M Criado, and D M Armstrong
September 2019, Annual review of vision science,
D E Marple-Horvat, and J M Criado, and D M Armstrong
December 1997, Investigative ophthalmology & visual science,
D E Marple-Horvat, and J M Criado, and D M Armstrong
August 1989, Aviation, space, and environmental medicine,
D E Marple-Horvat, and J M Criado, and D M Armstrong
June 1991, Journal of neurophysiology,
Copied contents to your clipboard!