patufet, the gene encoding the Drosophila melanogaster homologue of selenophosphate synthetase, is involved in imaginal disc morphogenesis. 1998

B Alsina, and F Serras, and J Baguñá, and M Corominas
Departament de Genética, Universitat de Barcelona, Spain.

Proliferation in imaginal discs requires cell growth and is linked to patterning processes controlled by secreted cell-signalling molecules. To identify new genes involved in the control of cell proliferation we have screened a collection of P-lacW insertion mutants that result in lethality in the larval/pupal stages, and characterized a novel gene, patufet (ptuf). Inactivation of ptuf by a P element insertion in the 5' untranslated region leads to aberrant imaginal disc morphology characterized by a reduction in mass of discs and disorganization of disc cells where no folding or patterning can be detected. Moreover, apoptotic cells can be observed in these small and abnormal mutant discs. To examine the role of ptuf we have studied its clonal behaviour in genetic mosaics generated by mitotic recombination. The mutation causes reduced cell viability, smaller cell size and stops vein differentiation. Non-autonomous effects, such as abnormal differentiation of wild-type cells surrounding the clones, are also observed. We have cloned the ptuf gene of Drosophila melanogaster and found that it encodes a selenophosphate synthetase, which is the first identified in insects. Mutant flies transformed with the full-length cDNA show complete reversion of lethality and disc phenotype. Northern blot analysis and in situ hybridization indicate that the ptuf gene is expressed in imaginal discs as well as at different stages of development. The synthesis of selenoproteins by the selenophosphate synthetase, the role of selenoproteins in the maintenance of the oxidant/antioxidant balance of the cell and its possible implications in imaginal disc morphogenesis are discussed.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011679 Pupa An inactive stage between the larval and adult stages in the life cycle of INSECTA. Chrysalis,Pupae
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

B Alsina, and F Serras, and J Baguñá, and M Corominas
January 1990, Developmental genetics,
B Alsina, and F Serras, and J Baguñá, and M Corominas
March 2016, Metallomics : integrated biometal science,
B Alsina, and F Serras, and J Baguñá, and M Corominas
January 2003, FEBS letters,
B Alsina, and F Serras, and J Baguñá, and M Corominas
March 1986, The Journal of experimental zoology,
B Alsina, and F Serras, and J Baguñá, and M Corominas
December 1995, Development (Cambridge, England),
B Alsina, and F Serras, and J Baguñá, and M Corominas
October 2015, Genetika,
B Alsina, and F Serras, and J Baguñá, and M Corominas
May 1983, Developmental biology,
B Alsina, and F Serras, and J Baguñá, and M Corominas
January 1971, Developmental biology,
B Alsina, and F Serras, and J Baguñá, and M Corominas
January 1992, DNA sequence : the journal of DNA sequencing and mapping,
B Alsina, and F Serras, and J Baguñá, and M Corominas
January 1983, Progress in clinical and biological research,
Copied contents to your clipboard!