Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. 1997

W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
Department of Biological Sciences, University of Calgary, Alberta, Canada.

We have isolated and characterized two superoxide dismutase (SOD) cDNAs from a Leishmania chagasi promastigote cDNA library using degenerate primers derived from conserved amino acid residues of previously isolated manganese and iron SODs. Comparison of these two L. chagasi SOD deduced amino acid sequences with previously isolated MnSOD and FeSOD amino acid sequences revealed that they have higher homology to, and complete conservation of, invariant residues found in iron-containing SODs. Southern blot analysis showed that one gene, L.c.FeSODA, is a single copy gene, whereas the other gene, L.c.FeSODB, belongs to a multi-gene family. Transcript levels and enzyme activities of L.c.FeSODA and L.c.FeSODB show differential stage expression, with higher levels present in the amastigote stage of the parasite compared to the promastigote stage. Expression of the L.c.FeSODs in an E. coli SOD null strain protected the bacteria against free radical generating agents. Overexpression of these FeSODs in L. chagasi parasites also showed enhanced protection against the free radical generating agents, paraquat and nitroprusside. The cloning, characterization and overexpression of the L.c.FeSODA and L.c.FeSODB genes and proteins demonstrates the possible role of SODs in Leishmania pathogenesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010269 Paraquat A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds. Methyl Viologen,Gramoxone,Paragreen A,Viologen, Methyl
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
December 1997, Molecular and biochemical parasitology,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
September 1995, Infection and immunity,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
February 1994, Infection and immunity,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
August 2018, Molecular biotechnology,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
January 2012, Biotechnology and applied biochemistry,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
April 2004, The Journal of parasitology,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
December 1990, Proceedings of the National Academy of Sciences of the United States of America,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
October 2000, The Journal of parasitology,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
August 2017, Journal of basic microbiology,
W J Paramchuk, and S O Ismail, and A Bhatia, and L Gedamu
December 2014, Parasitology international,
Copied contents to your clipboard!