Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions. 1998

L N Hwang, and N Englund, and A K Pattnaik
Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33136, USA.

The intercistronic gene junctions of vesicular stomatitis virus (VSV) contain conserved sequence elements that are important for polyadenylation and transcription termination of upstream transcript as well as reinitiation of transcription of downstream transcript. To examine the role of the putative polyadenylation signal 3'AUACU(7)5' at the gene junctions in polyadenylation and transcription termination, we constructed plasmids encoding antigenomic minireplicons containing one or two transcription units. In plasmid-transfected cells, analyses of the bicistronic minireplicon containing the wild-type or mutant intercistronic gene junctions for the ability to direct synthesis of polyadenylated upstream, downstream, and readthrough mRNAs showed that the AUACU(7) sequence element is required for polyadenylation of VSV mRNA. Deletion of AUAC or U(7) resulted in templates that did not support polyadenylation of upstream mRNA. Interestingly, we found that the loss of polyadenylation function led to antitermination of the upstream transcript and resulted in a readthrough transcript that contained the upstream and downstream mRNA sequences. Mutations that blocked polyadenylation also blocked transcription termination and generated mostly readthrough transcript. Reverse transcription-PCR of readthrough transcripts and subsequent nucleotide sequencing of the amplified product revealed no extra adenosine residues at the junction of the readthrough transcript. These results indicate that polyadenylation is required for transcription termination of VSV mRNA. The intergenic dinucleotide GA did not appear to be necessary for transcription termination. Furthermore, we found that insertion of the polyadenylation signal sequence AUACU(7) alone was sufficient to direct polyadenylation and efficient transcription termination at the inserted site. Taken together, the data presented here support the conclusion that polyadenylation is the major determinant of transcription termination at the intercistronic gene junctions of VSV.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D010750 Phosphoproteins Phosphoprotein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

L N Hwang, and N Englund, and A K Pattnaik
May 1974, Journal of virology,
L N Hwang, and N Englund, and A K Pattnaik
October 1982, Virology,
L N Hwang, and N Englund, and A K Pattnaik
May 1980, Journal of virology,
L N Hwang, and N Englund, and A K Pattnaik
January 1977, The Journal of general virology,
Copied contents to your clipboard!