Isoform-specific O-glycosylation by murine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T3, in vivo. 1998

K Nehrke, and F K Hagen, and L A Tabak
Department of Dental Research, School of Dentistry, University of Rochester, Rochester, NY 14648, USA.

Multiple isoforms of UDP-GalNAc:polypeptide N-acetylgalactosaminyl- transferase (ppGaNTase) have been cloned and expressed from a variety of organisms. In general, these isoforms display different patterns of tissue-specific expression, but exhibit overlapping substrate specificities, in vitro . A peptide substrate, derived from the sequence of the V3 loop of the HIV gp120 protein (HIV peptide), has previously been shown to be glycosylated in vitro exclusively by the ppGaNTase-T3 (Bennett et al. , 1996). To determine if this isoform-specificity is maintained in vivo , we have examined the glycosylation of this substrate when it is expressed as a reporter peptide (rHIV) in a cell background (COS7 cells) which lacks detectable levels of the ppGaNTase-T3. Glycosylation of rHIV was greatly increased by coexpression of a recombinant ppGaNTase-T3. Overexpression of ppGaNTase-T1 yielded only partial glycosylation of the reporter. We have also determined that the introduction of a proline residue at the +3 position flanking the potential glycosylation site eliminated ppGaNTase-T3 selectivity toward rHIV observed both in vivo and in vitro .

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000097763 Polypeptide N-acetylgalactosaminyltransferase Family of enzymes that catalyze the formation of GalNAcAlpha1-serine/threonine linkages in glycoproteins. Galactosylgalactosylglucosylceramide beta-D-acetylgalactosaminyltransferase,Globoside Synthase,Globoside beta GalNAc Transferase,Protein-UDPacetylgalactosaminyltransferase,(1-3)-N-acetyl-beta-galactosaminyltransferase,(1-4)-N-acetyl-beta-D-galactosaminyltransferase,4-GalNActransferase,GalNAc-T1,GalNAc-T10,GalNAc-T2,GalNAc-T3,GalNAc-T4,GalNAc-T5,GalNAc-T8,GalNAc-transferase,GalNAcT-1,GalNAcT-2,GalNAcT-4,GalNAcT-8,UDP-GPAGAT,UDP-GalNAc-beta-galactose beta 1,4-N-acetylgalactosaminyltransferase,UDP-GalNAc-polypeptide N-acetylgalactosaminyltransferase,UDP-N-acetyl-D-galactosamine polypeptide N-acetylgalactosaminyltransferase-T4,UDP-N-acetylgalactosamine mucin transferase,UDP-N-acetylgalactosamine-beta-galactose beta 1,4-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-globoside beta-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-globosidetriaosylceramide beta-3-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-polypeptide N-acetylgalactosamine transferase,UDPacetylgalactosamine-galactosyl-galactosyl-glucosylceramide beta-N-acetyl-D-galactosaminyltransferase,UDPacetylgalactosamine-protein acetylgalactosaminyltransferase,beta-1,4-N-acetylgalactosaminyltransferase,beta-N-acetylgalactosaminyltransferase,beta1,6N-acetylgalactosaminyltransferase,polypeptide N-acetylgalactosaminyltransferase 1,polypeptide N-acetylgalactosaminyltransferase 10,polypeptide N-acetylgalactosaminyltransferase 2,polypeptide N-acetylgalactosaminyltransferase 3,polypeptide N-acetylgalactosaminyltransferase 4,polypeptide N-acetylgalactosaminyltransferase 5,polypeptide N-acetylgalactosaminyltransferase 8,pp-GalNAc-T10,ppGalNAc-T,Synthase, Globoside
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Nehrke, and F K Hagen, and L A Tabak
December 1993, Journal of dental research,
K Nehrke, and F K Hagen, and L A Tabak
November 1996, Biochemical and biophysical research communications,
K Nehrke, and F K Hagen, and L A Tabak
January 2010, The Journal of biological chemistry,
K Nehrke, and F K Hagen, and L A Tabak
July 1996, Analytical biochemistry,
K Nehrke, and F K Hagen, and L A Tabak
September 2000, Biochimica et biophysica acta,
Copied contents to your clipboard!