Horseradish peroxidase-dependent oxidation of deuteroporphyrin IX into chlorins. 1998

F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
USDA/ARS/NPURU, National Center for the Development of Natural Products, School of Pharmacy, University of Mississippi, 38677, USA. fdayan@ag.gov

Chlorins are cyclic tetrapyrrole derivatives of great interest for use in photodynamic therapy. We have found that horseradish peroxidase (EC 1.11.1.7) (HRP) can convert deuteroporphyrin IX (Deutero) into chlorins. Some characteristics of this enzymatic transformation were investigated. The formation of chlorins was determined spectrophotometrically by monitoring the change in absorbance in the Q-band region (638 nm). The reaction occurred without addition of H2O2 and had a pH optimum of 7.5. The presence of thiol-containing reductants, with a great preference for reduced glutathione, was required and could not be substituted by adding H2O2. Ascorbic acid acted as a potent inhibitor of the reaction, while other organic acids (citric and benzoic) had little to no inhibitory effect. The requirement for O2 was suggested by the inhibitory effect of sodium hydrosulfite and was confirmed by carrying the assay in nitrogen-saturated solutions. Though the reaction occurred without adding H2O2, low amounts of H2O2 (3-30 microM) were stimulatory to the assay. However, concentrations of 300 microM H2O2 or higher were inhibitory. Similarly, light was not required, but was stimulatory at low levels and inhibitory at high levels. Catalase and deferoxamine were inhibitory, but superoxide dismutase and mannitol had no effects. Kinetic analysis and respiratory studies suggest that HRP may initially react with reduced glutathione in a reaction that does not consume much oxygen. The ensuing steps, probably involving an oxygen free radical and porphyrin radical intermediates, consume a large amount of O2 to oxidize Deutero into chlorin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D003905 Deuteroporphyrins Porphyrins with four methyl and two propionic acid side chains attached to the pyrrole rings. Cobalt Deuteroporphyrin,Deuteroporphyrin, Cobalt
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
July 1997, Biochemistry and molecular biology international,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
December 1982, Biochemical and biophysical research communications,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
April 1957, The Journal of biological chemistry,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
June 1972, The Journal of biological chemistry,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
March 1985, The Biochemical journal,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
April 1968, Biochemical and biophysical research communications,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
January 1994, Biochimica et biophysica acta,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
July 1989, Archives of biochemistry and biophysics,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
January 1992, Chemical research in toxicology,
F E Dayan, and S O Duke, and V Faibis, and J M Jacobs, and N J Jacobs
June 1975, Canadian journal of biochemistry,
Copied contents to your clipboard!