Overexpression of the transmembrane tyrosine phosphatase LAR activates the caspase pathway and induces apoptosis. 1998

L P Weng, and J Yuan, and Q Yu
Pulmonary Center Department of Medicine Department of Biochemistry Boston University Medical Center Boston, Massachusetts 02118, USA.

BACKGROUND The protein tyrosine phosphatase family comprises transmembrane receptor-like and cytosolic forms. Although the exact biological functions of these enzymes are largely unknown, they are believed to counter-balance the effects of protein tyrosine kinases. We have previously identified and characterized a mammalian transmembrane protein tyrosine phosphatase, called LAR (leukocyte common antigen related gene), whose expression is often associated with proliferating epithelial cells or epithelial progenitor cells. This study investigates the potential role of LAR in the regulation of cell growth and death in mammals. RESULTS We overexpressed in mammalian cells in culture either the full-length wild-type LAR or a truncation mutant containing only the extracellular domain of the molecule, and found that whereas the truncated LAR could be readily overexpressed in various cell lines, cells overexpressing the wild-type LAR were negatively selected. Using an inducible expression system, we demonstrated that overexpression of the wild-type LAR, but not the truncated LAR, activated the caspase pathway directly and induced p53-independent apoptosis. CONCLUSIONS Our data suggest that LAR might regulate cellular signals essential for cell survival. Overproduction of LAR may tilt the balance between the tyrosine phosphorylation and dephosphorylation of proteins whose activities are critical for cell survival, and therefore lead to cell death. In addition, our observations that overexpression of LAR induces cell death without affecting cell adhesion suggest that LAR may activate the caspase pathway and induce cell death directly. This work is the first example of the involvement of a receptor-like protein tyrosine phosphatase in cell-death control and provides the basis for searching for molecules and mechanisms linking signal transduction by protein tyrosine phosphorylation to the caspase-mediated cell-death pathway.

UI MeSH Term Description Entries
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein

Related Publications

L P Weng, and J Yuan, and Q Yu
March 1999, Genes to cells : devoted to molecular & cellular mechanisms,
L P Weng, and J Yuan, and Q Yu
January 1996, The Journal of biological chemistry,
L P Weng, and J Yuan, and Q Yu
June 1998, The Journal of biological chemistry,
L P Weng, and J Yuan, and Q Yu
June 2005, FEBS letters,
L P Weng, and J Yuan, and Q Yu
April 2001, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!