Crystal structure of a cytokine-binding region of gp130. 1998

J Bravo, and D Staunton, and J K Heath, and E Y Jones
Laboratory of Molecular Biophysics, The Rex Richards Building, South Parks Road, Oxford OX1 3QU.

The structure of the cytokine-binding homology region of the cell surface receptor gp130 has been determined by X-ray crystallography at 2.0 A resolution. The beta sandwich structure of the two domains conforms to the topology of the cytokine receptor superfamily. This first structure of an uncomplexed receptor exhibits a similar L-shaped quaternary structure to that of ligand-bound family members and suggests a limited flexibility in relative domain orientation of some 3 degrees. The putative ligand-binding loops are relatively rigid, with a phenylalanine side chain similarly positioned to exposed aromatic residues implicated in ligand binding for other such receptors. The positioning and structure of the N-terminal portion of the polypeptide chain have implications for the structure and function of cytokine receptors, such as gp130, which contain an additional N-terminal immunoglobulin-like domain.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

J Bravo, and D Staunton, and J K Heath, and E Y Jones
September 2001, FEBS letters,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
June 1979, Journal of molecular biology,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
March 2001, Science (New York, N.Y.),
J Bravo, and D Staunton, and J K Heath, and E Y Jones
January 1999, Protein science : a publication of the Protein Society,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
September 1998, Annals of the New York Academy of Sciences,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
July 2010, The Journal of biological chemistry,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
March 2017, Structure (London, England : 1993),
J Bravo, and D Staunton, and J K Heath, and E Y Jones
August 2002, Journal of molecular biology,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
December 2012, Cell research,
J Bravo, and D Staunton, and J K Heath, and E Y Jones
November 2002, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!