Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. 1998

Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
Laboratoire de Neurophysiologie Cellulaire et Intégrée, Unité Mixte de Recherche 7519-Centre National de la Recherche Scientifique, Université Louis Pasteur, 67084 Strasbourg Cedex, France.

The functional characteristics of binding sites for the neuropeptide oxytocin (OT) detected by radioautography in laminae I and II of the dorsal horn (DH) and on cultured neonatal DH neurons were studied on the latter using perforated patch-clamp recordings. The neurons were identified by their spike discharge properties and on the basis of the presence of met-enkephalin-like and glutamate decarboxylase-like immunoreactivities. OT (100 nM) never induced any membrane current at a holding potential of -60 mV but increased the frequency of spontaneously occurring AMPA receptor-mediated EPSCs or the mean amplitude of electrically evoked EPSCs in a subset (35%) of neurons. The frequency of miniature EPSCs (m-EPSCs) recorded in the presence of 0.5 microM tetrodotoxin was also increased by OT (100 nM) without any change in their mean amplitude, indicating an action at a site close to the presynaptic terminal. The decay kinetics of any type of EPSC were never modified by OT. The effect of OT was reproduced by [Thr4, Gly7]-OT (100 nM), a selective OT receptor agonist, and blocked by d(CH2)5-[Tyr(Me)2,Thr4,Tyr-NH29]-ornithine vasotocin (100 nM), a specific OT receptor antagonist. Reducing the extracellular Ca2+ concentration from 2.5 to 0.3 mM in the presence of Cd2+ (100 microM) reversibly blocked the effect of OT on m-EPSCs. The OT receptors described here may represent the substrate for modulatory actions of descending hypothalamo-spinal OT-containing pathways on the nociceptive system.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase

Related Publications

Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
January 2010, Anesthesiology,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
January 2008, Pain,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
March 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
January 2016, The Journal of physiology,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
September 2014, Brain research,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
November 2011, Masui. The Japanese journal of anesthesiology,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
January 2000, Journal of biomedical science,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
January 1996, Progress in brain research,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
November 2023, Stem cell reviews and reports,
Y H Jo, and M E Stoeckel, and M J Freund-Mercier, and R Schlichter
February 2014, The Journal of physiology,
Copied contents to your clipboard!