Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. 1998

S F Leibowitz, and A Akabayashi, and J Wang
The Rockefeller University, New York, New York 10021, USA.

Previous studies have suggested that the peptide galanin (GAL) in the hypothalamus is related to the preference of an animal for dietary fat. The present report investigates this relationship further to identify the specific GAL-synthesizing cell groups involved and to characterize their association to circulating glucose or hormones and their possible contribution to body fat deposition. Male albino Sprague Dawley rats were tested in different feeding paradigms with diets containing the macronutrients, fat, carbohydrate, or protein. These studies, using multiple techniques, identify a cell group in the hypothalamus that expresses GAL and that shows a shift in peptide activity in close relation to dietary fat, circulating glucose, and body fat. In all paradigms, a rise in fat intake, from 10 to 30%, is associated with reduced levels of insulin and corticosterone and normal glucose levels, whereas a further increase in fat ingestion (>30%) leads to hyperglycemia along with greater adiposity. In the hypothalamus, GAL gene expression, peptide production, and peptide release rise significantly (by 40%) in association with fat ingestion, showing no relation to either carbohydrate or protein ingestion. This change is highly site specific, evident predominantly in GAL-synthesizing neurons in the anterior parvocellular region of the paraventricular nucleus (aPVN) and in GAL-containing terminals in the external zone of the median eminence (ME). Positive correlations detected between mRNA abundance in the aPVN and GAL peptide in the ME support the existence of an aPVN-ME projection system related to fat intake and fat deposition. When activated by dietary fat, the contribution of this projection to body fat is suggested by consistent positive correlations between aPVN-ME GAL and either dietary fat, circulating glucose, or body fat and by significantly higher GAL levels (+30%) in obesity-prone compared with obesity-resistant rats. This evidence supports a role for this hypothalamic GAL projection system in the development of obesity produced by the overconsumption of fat.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D008473 Median Eminence Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND. Eminentia Mediana,Medial Eminence,Eminence, Medial,Eminence, Median,Eminences, Medial,Eminentia Medianas,Medial Eminences,Mediana, Eminentia,Medianas, Eminentia
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)

Related Publications

S F Leibowitz, and A Akabayashi, and J Wang
September 1992, Neuroscience research,
S F Leibowitz, and A Akabayashi, and J Wang
August 1994, The Journal of comparative neurology,
S F Leibowitz, and A Akabayashi, and J Wang
October 1996, The Journal of comparative neurology,
S F Leibowitz, and A Akabayashi, and J Wang
October 2018, The Journal of physiology,
S F Leibowitz, and A Akabayashi, and J Wang
April 1989, Experimental and clinical endocrinology,
Copied contents to your clipboard!