Detection of beta-lactamase production by gram-negative bacteria. 1976

G Masuda, and S Tomioka, and M Hasegawa

UI MeSH Term Description Entries
D010405 Penicillinase A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-. beta-Lactamase I,AER-I beta-Lactamase,Benzylpenicillinase,Carbenicillinase,Exopenicillinase,beta Lactamase III,beta Lactamase RP4,gamma-Penicillinase,AER I beta Lactamase,Lactamase RP4, beta,beta Lactamase I,beta-Lactamase, AER-I,gamma Penicillinase
D002510 Cephalosporinase beta-Lactamase II,Cephalexin Amidase,Cephalosporin Amido-beta-Lactam Hydrolase,Cephalosporin beta-Lactamase,Amidase, Cephalexin,Amido-beta-Lactam Hydrolase, Cephalosporin,Cephalosporin Amido beta Lactam Hydrolase,Cephalosporin beta Lactamase,Hydrolase, Cephalosporin Amido-beta-Lactam,beta Lactamase II,beta-Lactamase, Cephalosporin
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

G Masuda, and S Tomioka, and M Hasegawa
January 1989, Diagnostic microbiology and infectious disease,
G Masuda, and S Tomioka, and M Hasegawa
June 1979, Journal of bacteriology,
G Masuda, and S Tomioka, and M Hasegawa
January 1969, Israel journal of medical sciences,
G Masuda, and S Tomioka, and M Hasegawa
May 1968, Canadian journal of microbiology,
G Masuda, and S Tomioka, and M Hasegawa
June 1983, The Journal of antimicrobial chemotherapy,
G Masuda, and S Tomioka, and M Hasegawa
July 2014, Journal of laboratory physicians,
G Masuda, and S Tomioka, and M Hasegawa
January 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy,
G Masuda, and S Tomioka, and M Hasegawa
January 2013, Frontiers in microbiology,
Copied contents to your clipboard!