The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. 1976

S P Wise, and E G Jones

Anterograde and retrograde tracing experiments have been used to demonstrate the origin and terminal distribution of commissural fibers in the first somatosensory cortex (SI) of the rat. The commissural fibers originate from pyramidal cells of all layers, but predominantly from layers III and V. The fibers terminate in a series of approximately vertical bands. In each of these there are concentrations of terminals extending from the inner portion of the molecular layer to the deep portion of layer III as well as in the superficial part of layer V, and in layer VI. Discrete vertical bands of cortex are reciprocally connected across the midline to give both the origin and terminal regions of the projection a patchy or "columnar" appearance. The commissural fibers arise from and terminate in areas of the cortex that lie between and alongside the aggregations of granule cells that distinguish SI of the rat. No commissural fibers terminate within the aggregations of layer IV cells themselves but the more superficial terminal ramifications may come to overlie these aggregations. A heterotopic projection to the contralateral second somatosensory cortex has been observed and is similar in form to the homotopic projection to SI. Many commissural fibers have crossed the midline in the corpus callosum by the day of birth but lie in the underlying white matter and do not enter the cortical plate until at least the third postnatal day. During the first postnatal week these fibers grow somewhat diffusely into the maturing cortex and their topographic and laminar pattern of distribution attains its adult characteristics by the end of the first week. Commissural axons, thus, arise from immature cells but the maturation of cell form seems to precede the ingrowth of these axons and the acquisition of commissural synapses.

UI MeSH Term Description Entries
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S P Wise, and E G Jones
September 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S P Wise, and E G Jones
November 1975, Brain research,
S P Wise, and E G Jones
November 1968, Journal of anatomy,
S P Wise, and E G Jones
November 1975, Science (New York, N.Y.),
S P Wise, and E G Jones
April 1983, Journal of neurocytology,
S P Wise, and E G Jones
November 1966, Electroencephalography and clinical neurophysiology,
S P Wise, and E G Jones
January 1971, The Journal of comparative neurology,
S P Wise, and E G Jones
August 1985, The Journal of comparative neurology,
S P Wise, and E G Jones
September 1985, The Journal of comparative neurology,
Copied contents to your clipboard!