Skeletal muscle regeneration during aging and after long-term denervation. 1997

B M Carlson
Department of Anatomy and Cell Biology, University of Michigan Ann Arbor 48109, USA.

Data accumulated in recent years strongly suggest that the basis for at least part of the muscle atrophy seen in old age is related to the diminution of motor innervation in normal muscle and a decreased effectiveness of reinnervation of regenerating muscle fibers. Thus, attempts to stabilize reverse the decline of the skeletal musculature during aging must take into account both the effects of aging on the peripheral nervous system and the presence of populations of denervated muscle fibers in the aging muscles. Of considerable importance is the question of how long muscle fibers in old animals can remain denervated before they begin to lose their capacity for restoration if they ultimately become reinnervated. The experimental studies reviewed here have shown that normal muscles in old animals are capable of a high degree of restoration as long as their motor nerve supply remains undamaged. After a certain period of time, denervated muscle in young animals steadily loses the capacity to restore or repair itself. To date, so little information is available on the properties of denervated muscle in old animals that meaningful comparisons cannot be made. Ultimately, ensuring that normal or injured muscle in old individuals is supplied by an effective motor innervation may be a real key to the problems of muscle loss in old age, but if such could be provided, it will be important that the old musculature, whether normal or injured, is capable of adequately responding to the innervation.

UI MeSH Term Description Entries
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

B M Carlson
September 1994, Journal of the neurological sciences,
B M Carlson
December 1989, Journal of neurocytology,
B M Carlson
March 2015, European journal of translational myology,
B M Carlson
February 1953, The Journal of bone and joint surgery. British volume,
B M Carlson
October 1988, Journal of the neurological sciences,
B M Carlson
October 2023, Advanced biology,
B M Carlson
June 2001, American journal of physiology. Cell physiology,
Copied contents to your clipboard!