31P-NMR determinations of cytosolic phosphodiesters in turtle hearts. 1997

J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466, USA. jwasser@cvm.tamu.edu

As part of our ongoing research on cardiac hypoxia tolerance we have conducted 31P nuclear magnetic resonance (NMR) studies of isolated, perfused, working hearts from freshwater turtles, animals that are well known for their ability to tolerate prolonged periods of anoxia. A striking feature of turtle heart spectra is an extremely high concentration of NMR visible phosphodiesters (PDEs). Cardiac spectra from mammals, on the other hand, typically exhibit only a small resonance in the PDE region. Our aim in this study was to compare myocardial PDE profiles between the highly hypoxia tolerant western painted turtle (Chrysemys picta bellii) and the relatively hypoxia sensitive softshelled turtle (Trionyx spinifer) in order to begin to rest the hypothesis that high constitutive levels of cytosolic PDEs may play a role in conferring hypoxia and ischemia tolerance on the myocardium. We also collected 31P-NMR spectra of PCA extracts of tissue from these species and from Kemp's ridley sea turtles (Lepidochelys kempi), as well as spectra from isolated hearts and PCA extracts of red-eared sliders (Trachemys [formerly Pseudemys] scripta]). Total NMR visible phosphodiesters make up 24 +/- 8.6% of the total NMR visible phosphorus in Chrysemys hearts, 20.7 +/- 5.9% in Trachemys hearts, but only 12.2 +/- 5.1% in Trionyx hearts (P < 0.05). We have identified three distinct PDEs in turtle hearts: glycerophosphorylcholine (GPC); glycerophosphorylethanolamine (GPE); and serine ethanolamine phosphodiester (SEP). SEP is the dominant compound in Chrysemys and Trachemys (79.3 +/- 10.2% and 84.7 +/- 3.7% of total PDE, respectively), while GPC is most abundant in Trionyx (74.0 +/- 4.3% of total PDE) and Lepidochelys (not quantitated). The function of this class of compounds is unclear but it has been suggested that cytosolic PDEs may function as lysophospholipase inhibitors, a role that would decrease the rate of membrane phospholipid turnover. Our comparative data suggest that cytosolic PDEs could play a role in phospholipid sparing during anoxic or ischemic stress in turtles but a direct test of this hypothesis awaits future experimentation.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
September 1990, The American journal of physiology,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
December 1982, Biochimica et biophysica acta,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
January 1990, The Journal of biological chemistry,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
January 1991, The American journal of physiology,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
June 1982, Biochimica et biophysica acta,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
March 1986, FEBS letters,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
January 1989, Advances in experimental medicine and biology,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
January 1983, Biochemical and biophysical research communications,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
January 1989, Free radical research communications,
J S Wasser, and L Vogel, and S S Guthrie, and N Stolowich, and M Chari
August 2010, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!