Urea recycling in sheep: effects of intake. 1998

A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
Department of Agriculture, University of Aberdeen, UK.

The effect of intake on urea production, entry into the digestive tract and return of N to the ornithine cycle was studied in four sheep. Each sheep received 0.6, 1.2 and 1.8 x estimated maintenance energy intake quantities of grass pellets for 9 d. After 4 d of adjustment, N balance measurements were conducted between days 5 and 8. From day 7 to day 9 animals were continuously infused, via the jugular vein, with [15N15N]urea and three urine samples were collected at approximately 2 h intervals 48-54 h after the start of infusion. Total urea and enrichments of [15N15N]- and [14N15N]urea in the urine samples were determined. Urea production was calculated from the isotopic dilution of [15N15N]urea and entry into the gastrointestinal tract (GIT) obtained from the difference between this and urinary urea elimination. Urea which enters the GIT undergoes hydrolysis to liberate NH3 which may be reabsorbed and enter the ornithine cycle in which case the product is [14N15N]urea, based on the probabilities of labelled and unlabelled N providing ureagenic precursors. The quantity of urea-N which returns to the ornithine cycle from the GIT can thus be calculated. Existing models based on this approach yield overestimates of the fate of individual urea molecules due to a failure to allow for multiple recycling of [14N15N]urea species through the GIT. Refinements introduced to cover this resulted in a 33-48% reduction in calculated return of label for the current study. The present model also predicted that 95% of the label movements across the GIT could be accommodated by three or fewer entries and returns of urea-N and 99% by recycling for a maximum of six occasions. Urea-N production increased with intake (P < 0.001) and exceeded digestible N values at all intakes. Urea which entered the digestive tract, both in absolute terms (P < 0.001) and as a proportion of production (0.62, 0.69, 0.73; P = 0.027), increased with intake. The proportion of entry into the digestive tract which was returned to the ornithine cycle remained reasonably constant (0.37-0.41) across all intakes but the absolute amount increased (5.6, 9.2 and 15.0 g N/d; P < 0.001) with intake. If allowance is included for losses of 15N in faeces then the approach offers a relatively simple means of estimating anabolic reuse of urea by digestive tract micro-organisms and can complement data obtained from the technically more demanding arterio-venous and multiple-isotope techniques used hitherto.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D009952 Ornithine An amino acid produced in the urea cycle by the splitting off of urea from arginine. 2,5-Diaminopentanoic Acid,Ornithine Dihydrochloride, (L)-Isomer,Ornithine Hydrochloride, (D)-Isomer,Ornithine Hydrochloride, (DL)-Isomer,Ornithine Hydrochloride, (L)-Isomer,Ornithine Monoacetate, (L)-Isomer,Ornithine Monohydrobromide, (L)-Isomer,Ornithine Monohydrochloride, (D)-Isomer,Ornithine Monohydrochloride, (DL)-Isomer,Ornithine Phosphate (1:1), (L)-Isomer,Ornithine Sulfate (1:1), (L)-Isomer,Ornithine, (D)-Isomer,Ornithine, (DL)-Isomer,Ornithine, (L)-Isomer,2,5 Diaminopentanoic Acid
D004064 Digestive System A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS). Ailmentary System,Alimentary System
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D013223 Statistics as Topic Works about the science and art of collecting, summarizing, and analyzing data that are subject to random variation. Area Analysis,Estimation Technics,Estimation Techniques,Indirect Estimation Technics,Indirect Estimation Techniques,Multiple Classification Analysis,Service Statistics,Statistical Study,Statistics, Service,Tables and Charts as Topic,Analyses, Area,Analyses, Multiple Classification,Area Analyses,Classification Analyses, Multiple,Classification Analysis, Multiple,Estimation Technic, Indirect,Estimation Technics, Indirect,Estimation Technique,Estimation Technique, Indirect,Estimation Techniques, Indirect,Indirect Estimation Technic,Indirect Estimation Technique,Multiple Classification Analyses,Statistical Studies,Studies, Statistical,Study, Statistical,Technic, Indirect Estimation,Technics, Estimation,Technics, Indirect Estimation,Technique, Estimation,Technique, Indirect Estimation,Techniques, Estimation,Techniques, Indirect Estimation

Related Publications

A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
May 1990, The American journal of physiology,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
September 1977, The Proceedings of the Nutrition Society,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
April 2004, Journal of animal science,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
January 1970, Physiologia Bohemoslovaca,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
January 1988, Physiologia Bohemoslovaca,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
May 1965, Journal of animal science,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
May 1991, Journal of pediatric surgery,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
January 1989, Reproduction, nutrition, development,
A Sarraseca, and E Milne, and M J Metcalf, and G E Lobley
August 1978, The American journal of clinical nutrition,
Copied contents to your clipboard!