Pharmacokinetics of dolasetron after oral and intravenous administration of dolasetron mesylate in healthy volunteers and patients with hepatic dysfunction. 1997

K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
Hoechst Marion Roussel, Kansas City, Missouri 64134, USA.

In previous studies, dolasetron was shown to have both renal and hepatic elimination mechanisms. This study was conducted to determine the impact of varying degrees of hepatic dysfunction on the pharmacokinetics and safety of dolasetron and its reduced metabolites. Seventeen adults were studied: six healthy volunteers (group I), seven patients with mild hepatic impairment (Child-Pugh class A; group II), and four patients with moderate to severe hepatic impairment (Child-Pugh class B or C1; group III). Single 150-mg doses of dolasetron mesylate were administered intravenously and orally, with a 7-day washout period separating treatments. After intravenous administration, no differences were observed between healthy volunteers and patients with hepatic impairment in maximum plasma concentration (Cmax), areas under the plasma concentration-time curve (AUC), or elimination half-life (t1/2) of intact dolasetron. No significant differences were found in Cmax, AUC, or apparent clearance (C(lapp)) of hydrodolasetron, the primary metabolite of dolasetron. The mean t1/2 increased from 6.87 hours in group I to 11.69 hours in group III. After oral administration, C(lapp) of hydrodolasetron decreased by 42%, and Cmax increased by 18% in patients with moderate to severe hepatic impairment. There were less changes in patients with mildly hepatic impairment. Total percentage of dose excreted as metabolites was similar for healthy volunteers and patients with hepatic impairment, although urinary metabolite profiles differed slightly. Dolasetron was well tolerated and there were no apparent differences in adverse effects between groups or treatments. Because hepatic impairment did not influence Cl(app) of hydrodolasetron after intravenous administration, and the range of plasma concentrations of hydrodolasetron after oral administration was not different from those observed in healthy volunteers, dosage adjustments are not recommended for patients with hepatic disease and normal renal function.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008107 Liver Diseases Pathological processes of the LIVER. Liver Dysfunction,Disease, Liver,Diseases, Liver,Dysfunction, Liver,Dysfunctions, Liver,Liver Disease,Liver Dysfunctions
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011807 Quinolizines
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
October 1996, Journal of clinical pharmacology,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
September 1998, Journal of clinical pharmacology,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
January 1999, Biopharmaceutics & drug disposition,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
May 1997, Biopharmaceutics & drug disposition,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
December 1992, Journal of pharmaceutical sciences,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
April 1986, European journal of clinical microbiology,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
August 1984, European journal of clinical microbiology,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
December 1990, Arzneimittel-Forschung,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
November 1996, Clinical pharmacology and therapeutics,
K Stubbs, and L A Martin, and D C Dimmitt, and N Pready, and W F Hahne
January 1984, European journal of drug metabolism and pharmacokinetics,
Copied contents to your clipboard!