5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting. A comparison of their pharmacology and clinical efficacy. 1998

R E Gregory, and D S Ettinger
Johns Hopkins Oncology Center, Baltimore, Maryland, USA.

In the mid-1980s it was discovered that serotonin (5-hydroxytryptamine; 5-HT) was at least partially responsible for producing chemotherapy-induced nausea and vomiting. It was therefore realised that serotonin receptor blockade with serotonin 5-HT3 receptor antagonists could inhibit chemotherapy-induced nausea and vomiting. 5-HT3 antagonists have different chemical structures and receptor binding affinity. Granisetron, dolasetron and its major metabolite are pure 5-HT3 antagonists, while ondansetron and tropisetron are weak antagonists at the 5-HT4 receptor. Ondansetron has also been demonstrated to bind at other serotonin receptors and to the opioid mu receptor. The half-lives of granisetron, tropisetron and the active metabolite of dolasetron are 2 to 3 times longer than that of ondansetron. These observations initially suggested that more frequent ondansetron administration would be required; however, it has now been shown that receptor blockade does not correlate with elimination half-life and all 5-HT3 antagonists can be effectively administered once daily. Clinical trials have been conducted that directly compare the 5-HT3 antagonists. To compare these studies, it is necessary to assess trial design, including known risk factors for the development of chemotherapy-induced nausea and vomiting, and response criteria. Stratification for risk factors, use of strict efficacy criteria and randomisation to a blinded trial using an appropriate comparative regimen are essential for a well designed antiemetic trial. Comparative clinical trials using various doses, routes and regimens of administration have been conducted with 5-HT3 antagonists. Despite some trial design shortcomings, most of the studies show equal efficacy between the agents, especially in moderately emetogenic chemotherapy and mild, infrequently occurring adverse effects. The addition of steroids also appears to improve outcome. However, since many doses and regimens of ondansetron were used, further study is needed to determine the optimal regimen. The efficacy of 5-HT3 antagonists in controlling delayed nausea and vomiting from chemotherapy is less well studied. Further, there is no good scientific rationale for the use of 5-HT3 antagonists in controlling delayed nausea and vomiting since serotonin has not been shown to be released during the delayed phase. In fact, most studies show no benefit or modest benefit of 5-HT3 antagonists over placebo. Because the 5-HT3 antagonists perform similarly in the clinical setting, pharmacological differences do not seem to translate into therapeutic differences. There is also no appreciable difference in the incidence or severity of adverse effects among the 5-HT3 antagonists. Determination of clinical use may then be driven by cost.

UI MeSH Term Description Entries
D009325 Nausea An unpleasant sensation in the stomach usually accompanied by the urge to vomit. Common causes are early pregnancy, sea and motion sickness, emotional stress, intense pain, food poisoning, and various enteroviruses.
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000932 Antiemetics Drugs used to prevent NAUSEA or VOMITING. Anti-emetic,Antiemetic,Antiemetic Agent,Antiemetic Drug,Anti-Emetic Effect,Anti-Emetic Effects,Anti-emetics,Antiemetic Agents,Antiemetic Drugs,Antiemetic Effect,Antiemetic Effects,Agent, Antiemetic,Agents, Antiemetic,Anti Emetic Effect,Anti Emetic Effects,Anti emetic,Anti emetics,Drug, Antiemetic,Drugs, Antiemetic,Effect, Anti-Emetic,Effect, Antiemetic,Effects, Anti-Emetic,Effects, Antiemetic
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D014839 Vomiting The forcible expulsion of the contents of the STOMACH through the MOUTH. Emesis
D044406 Receptors, Serotonin, 5-HT3 A subclass of serotonin receptors that form cation channels and mediate signal transduction by depolarizing the cell membrane. The cation channels are formed from 5 receptor subunits. When stimulated the receptors allow the selective passage of SODIUM; POTASSIUM; and CALCIUM. Serotonin 3 Receptor,5-HT3 Receptor,5-Hydroxytryptamine-3 Receptor,Receptor, Serotonin 3,Receptor, Serotonin, 5-HT3 Subunit A,Receptor, Serotonin, 5-HT3 Subunit B,Receptor, Serotonin, 5-HT3 Subunit C,Receptor, Serotonin, 5-HT3 Subunit D,Receptor, Serotonin, 5-HT3 Subunit E,Receptor, Serotonin, 5-HT3A,Receptor, Serotonin, 5-HT3B,Receptor, Serotonin, 5-HT3C,Receptor, Serotonin, 5-HT3D,Receptor, Serotonin, 5-HT3E,Serotonin 3 Receptors,5 HT3 Receptor,5 Hydroxytryptamine 3 Receptor,Receptor, 5-Hydroxytryptamine-3,Receptors, Serotonin 3

Related Publications

R E Gregory, and D S Ettinger
January 1998, The cancer journal from Scientific American,
R E Gregory, and D S Ettinger
July 2012, Annals of palliative medicine,
R E Gregory, and D S Ettinger
November 1998, European journal of cancer (Oxford, England : 1990),
R E Gregory, and D S Ettinger
April 1991, DICP : the annals of pharmacotherapy,
R E Gregory, and D S Ettinger
August 1997, Oncology nursing forum,
Copied contents to your clipboard!