5alpha-reductase and 17beta-hydroxysteroid dehydrogenase expression in epithelial cells from hyperplastic and malignant human prostate. 1998

S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
Laboratoire de Cancérologie Expérimentale, Faculté de Médecine Nord, Marseille, France.

The aim of this study on testosterone (T) metabolism in benign prostatic hyperplasia (BPH) and prostatic cancer was to compare the formation of metabolites in freshly isolated epithelial cells and in cells of long-term cultures (2 passages) and to identify the 5alpha-reductase (5alpha-R) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) isoforms responsible for metabolite formation. Androst-4-enedione (A), dihydrotestosterone (DHT) and 5alpha-androstanedione (5alpha-A) formation were measured by high-performance liquid chromatography coupled to a Flo-one HP radioactivity detector. Enzyme isoforms were studied by Northern blot analysis and reverse transcriptase-polymerase chain reaction (RT-PCR). T conversion into A by 17beta-HSD, rather than reduction into DHT by 5alpha-R, was by far the predominant activity in cultured epithelial cells. The metabolic profile did not differ substantially between BPH and cancer cells. Long-term cell culture led to an increase in A formation compared with the level recorded in freshly isolated cells, with no significant incidence on the relative DHT level. According to RT-PCR results, both 5alpha-R isoforms (1 and 2) and 2 17beta-HSD isoforms (2 and 3) are present in epithelial cell cultures and in tissues. According to Northern blot analyses, the mRNAs for 5alpha-R2 and 17beta-HSD4 are expressed in tissue and those for 5alpha-R1 and types 2 and 4 17beta-HSD in isolated cell cultures. Moreover, finasteride, a specific 5alpha-R2 inhibitor, inhibits DHT and 5alpha-A formation in long-term cell culture of adenocarcinoma epithelial cells plated on Matrigel, suggesting a 5alpha-R2 expression. Thus, although 5alpha-R2 is present in freshly isolated epithelial cell cultures and in long-term epithelial cells cultured on Matrigel and predominates in prostate tissue, it is the 5alpha-R1 isoform that is preferentially expressed in epithelial cell cultures.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008297 Male Males
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D011470 Prostatic Hyperplasia Increase in constituent cells in the PROSTATE, leading to enlargement of the organ (hypertrophy) and adverse impact on the lower urinary tract function. This can be caused by increased rate of cell proliferation, reduced rate of cell death, or both. Adenoma, Prostatic,Benign Prostatic Hyperplasia,Prostatic Adenoma,Prostatic Hyperplasia, Benign,Prostatic Hypertrophy,Prostatic Hypertrophy, Benign,Adenomas, Prostatic,Benign Prostatic Hyperplasias,Benign Prostatic Hypertrophy,Hyperplasia, Benign Prostatic,Hyperplasia, Prostatic,Hyperplasias, Benign Prostatic,Hypertrophies, Prostatic,Hypertrophy, Benign Prostatic,Hypertrophy, Prostatic,Prostatic Adenomas,Prostatic Hyperplasias, Benign,Prostatic Hypertrophies
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
November 1999, The British journal of dermatology,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
March 1996, International journal of cancer,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
January 1990, The Journal of urology,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
January 2009, Neoplasma,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
November 1975, The Journal of endocrinology,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
November 1997, Endocrinology,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
August 2005, Archives of sexual behavior,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
September 2005, Molecular human reproduction,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
April 1974, Archives of biochemistry and biophysics,
S Délos, and J L Carsol, and F Fina, and J P Raynaud, and P M Martin
March 1998, The Prostate,
Copied contents to your clipboard!